Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 26, 2023 - Issue 3
167
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

MicroRNA-16 represses granulosa cell proliferation in polycystic ovarian syndrome through inhibition of the PI3K/Akt pathway by downregulation of Apelin13

, , , , &
Pages 611-621 | Received 16 Nov 2020, Accepted 09 Aug 2021, Published online: 02 Dec 2021

References

  • Altomare, D. A., Wang, H. Q., Skele, K. L., De Rienzo, A., Klein-Szanto, A. J., Godwin, A. K., & Testa, J. R. (2004). AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene, 23(34), 5853–5857. https://doi.org/10.1038/sj.onc.1207721
  • Azziz, R. (2018). Polycystic Ovary Syndrome. Obstetrics and Gynecology, 132(2), 321–336. https://doi.org/10.1097/AOG.0000000000002698
  • Azziz, R., Carmina, E., Chen, Z., Dunaif, A., Laven, J. S., Legro, R. S., Lizneva, D., Natterson-Horowtiz, B., Teede, H. J., & Yildiz, B. O. (2016). Polycystic ovary syndrome. Nature Reviews. Disease Primers, 2, 16057. https://doi.org/10.1038/nrdp.2016.57
  • Bandi, N., Zbinden, S., Gugger, M., Arnold, M., Kocher, V., Hasan, L., Kappeler, A., Brunner, T., & Vassella, E. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Research, 69(13), 5553–5559. https://doi.org/10.1158/0008-5472.CAN-08-4277
  • Burja, B., Kuret, T., Janko, T., Topalović, D., Živković, L., Mrak-Poljšak, K., Spremo-Potparević, B., Žigon, P., Distler, O., Čučnik, S., Sodin-Semrl, S., Lakota, K., & Frank-Bertoncelj, M. (2019). Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Frontiers in Cardiovascular Medicine, 6, 56. https://doi.org/10.3389/fcvm.2019.00056
  • Butz, H., & Patócs, A. (2019). MicroRNAs in endocrine tumors. EJIFCC, 30(2), 146–164. https://www.ifcc.org/ifcc-communications-publications-div
  • Castan-Laurell, I., Dray, C., Attane, C., Duparc, T., Knauf, C., & Valet, P. (2011). Apelin, diabetes, and obesity. Endocrine, 40(1), 1–9. https://doi.org/10.1007/s12020-011-9507-9
  • Chen, Z., Ou, H., Wu, H., Wu, P., & Mo, Z. (2019). Role of microRNA in the pathogenesis of polycystic ovary syndrome. DNA and Cell Biology, 38(8), 754–762. https://doi.org/10.1089/dna.2019.4622
  • Das, M., Djahanbakhch, O., Hacihanefioglu, B., Saridogan, E., Ikram, M., Ghali, L., Raveendran, M., & Storey, A. (2008). Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism, 93(3), 881–887. https://doi.org/10.1210/jc.2007-1650
  • Ding, C. F., Chen, W. Q., Zhu, Y. T., Bo, Y. L., Hu, H. M., & Zheng, R. H. (2015). Circulating microRNAs in patients with polycystic ovary syndrome. Human Fertility, 18(1), 22–29. https://doi.org/10.3109/14647273.2014.956811
  • Eppig, J. J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction, 122(6), 829–838. https://doi.org/10.1530/rep.0.1220829
  • Escobar-Morreale, H. F. (2018). Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nature Reviews. Endocrinology, 14(5), 270–284. https://doi.org/10.1038/nrendo.2018.24
  • Fu, X., He, Y., Wang, X., Peng, D., Chen, X., Li, X., & Wan, Q. (2018). MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome. Cellular Physiology and Biochemistry, 48(2), 670–682. https://doi.org/10.1159/000491894
  • Goodarzi, M. O., Dumesic, D. A., Chazenbalk, G., & Azziz, R. (2011). Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nature Reviews. Endocrinology, 7(4), 219–231. https://doi.org/10.1038/nrendo.2010.217
  • Gu, Y., Wang, X. D., Lu, J. J., Lei, Y. Y., Zou, J. Y., & Luo, H. H. (2015). Effect of mir-16 on proliferation and apoptosis in human A549 lung adenocarcinoma cells. International Journal of Clinical and Experimental Medicine, 8(3), 3227–3233. http://www.ijcem.com/V8_No3.html
  • Huang, W. (2017). MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods in Molecular Biology, 1617, 57–67. https://doi.org/10.1007/978-1-4939-7046-9_4
  • Humplikova, L., Kollinerova, S., Papajik, T., Pikalova, Z., Holzerova, M., Prochazka, V., Divoka, M., Modriansky, M., Indrak, K., & Jarosova, M. (2013). Expression of miR-15a and miR-16-1 in patients with chronic lymphocytic leukemia. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 157(4), 284–293. https://doi.org/10.5507/bp.2013.057
  • Jiang, Y., Liu, H., Ji, B., Wang, Z., Wang, C., Yang, C., Pan, Y., Chen, J., Cheng, B., & Bai, B. (2018). Apelin-13 attenuates ER stress-associated apoptosis induced by MPP + in SH-SY5Y cells. International Journal of Molecular Medicine, 42(3), 1732–1740. https://doi.org/10.3892/ijmm.2018.3719
  • Kolfschoten, I. G., & Regazzi, R. (2007). Technology Insight: Small, noncoding RNA molecules as tools to study and treat endocrine diseases. Nature Clinical Practice. Endocrinology & Metabolism, 3(12), 827–834. https://doi.org/10.1038/ncpendmet0674
  • Li, M., Zhao, H., Zhao, S. G., Wei, D. M., Zhao, Y. R., Huang, T., Muhammad, T., Yan, L., Gao, F., Li, L., Lu, G., Chan, W. Y., Leung, P. C. K., Dunaif, A., Liu, H. B., & Chen, Z. J. (2019). The HMGA2-IMP2 pathway promotes granulosa cell proliferation in polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism, 104(4), 1049–1059. https://doi.org/10.1210/jc.2018-00544
  • Li, T., Mo, H., Chen, W., Li, L., Xiao, Y., Zhang, J., Li, X., & Lu, Y. (2017). Role of the PI3K-Akt Signaling pathway in the pathogenesis of polycystic ovary syndrome. Reproductive Sciences, 24(5), 646–655. https://doi.org/10.1177/1933719116667606
  • Li, Y., Wang, H., Zhou, D., Shuang, T., Zhao, H., & Chen, B. (2018). Up-regulation of long noncoding RNA SRA promotes cell growth, inhibits cell apoptosis, and induces secretion of estradiol and progesterone in ovarian granular cells of mice. Medical Science Monitor, 24, 2384–2390. https://doi.org/10.12659/msm.907138
  • Liu, G., Liu, S., Xing, G., & Wang, F. (2020). lncRNA PVT1/MicroRNA-17-5p/PTEN axis regulates secretion of E2 and P4, proliferation, and apoptosis of ovarian granulosa cells in PCOS. Molecular Therapy. Nucleic Acids, 20, 205–216. https://doi.org/10.1016/j.omtn.2020.02.007
  • Long, W., Zhao, C., Ji, C., Ding, H., Cui, Y., Guo, X., Shen, R., & Liu, J. (2014). Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cellular Physiology and Biochemistry, 33(5), 1304–1315. https://doi.org/10.1159/000358698
  • Mabuchi, S., Kuroda, H., Takahashi, R., & Sasano, T. (2015). The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecologic Oncology, 137(1), 173–179. https://doi.org/10.1016/j.ygyno.2015.02.003
  • Martini, M., De Santis, M. C., Braccini, L., Gulluni, F., & Hirsch, E. (2014). PI3K/AKT signaling pathway and cancer: An updated review. Annals of Medicine, 46(6), 372–383. https://doi.org/10.3109/07853890.2014.912836
  • Mobarra, N., Shafiee, A., Rad, S. M., Tasharrofi, N., Soufi-Zomorod, M., Hafizi, M., Movahed, M., Kouhkan, F., & Soleimani, M. (2015). Overexpression of microRNA-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells. In Vitro Cellular & Developmental Biology. Animal, 51(6), 604–611. https://doi.org/10.1007/s11626-015-9872-4
  • Nandi, A., Chen, Z., Patel, R., & Poretsky, L. (2014). Polycystic ovary syndrome. Endocrinology and Metabolism Clinics of North America, 43(1), 123–147. https://doi.org/10.1016/j.ecl.2013.10.003
  • Peng, X., Li, F., Wang, P., Jia, S., Sun, L., & Huo, H. (2015). Apelin-13 induces MCF-7 cell proliferation and invasion via phosphorylation of ERK1/2. International Journal of Molecular Medicine, 36(3), 733–738. https://doi.org/10.3892/ijmm.2015.2265
  • Peng, Y., & Croce, C. M. (2016). The role of MicroRNAs in human cancer. Signal Transduction and Targeted Therapy, 1, 15004. https://doi.org/10.1038/sigtrans.2015.4
  • Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222. https://doi.org/10.1038/nrd.2016.246
  • Sirotkin, A. V., Laukova, M., Ovcharenko, D., Brenaut, P., & Mlyncek, M. (2010). Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. Journal of Cellular Physiology, 223(1), 49–56. https://doi.org/10.1002/jcp.21999
  • Sirotkin, A. V., Ovcharenko, D., Grossmann, R., Laukova, M., & Mlyncek, M. (2009). Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. Journal of Cellular Physiology, 219(2), 415–420. https://doi.org/10.1002/jcp.21689
  • Sørensen, A. E., Wissing, M. L., Salö, S., Englund, A. L., & Dalgaard, L. T. (2014). MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes, 5(3), 684–708. https://doi.org/10.3390/genes5030684
  • Szabó, P. M., Butz, H., Igaz, P., Rácz, K., Hunyady, L., & Patócs, A. (2013). Minireview: miRomics in endocrinology: A novel approach for modeling endocrine diseases. Molecular Endocrinology, 27(4), 573–585. https://doi.org/10.1210/me.2012-1220
  • Villavicencio, A., Goyeneche, A., Telleria, C., Bacallao, K., Gabler, F., Fuentes, A., & Vega, M. (2009). Involvement of Akt, Ras and cell cycle regulators in the potential development of endometrial hyperplasia in women with polycystic ovarian syndrome. Gynecologic Oncology, 115(1), 102–107. https://doi.org/10.1016/j.ygyno.2009.06.033
  • Wang, C. M., Yang, X. L., Liu, M. H., Cheng, B. H., Chen, J., & Bai, B. (2018). High-throughput sequencing analysis of differentially expressed miRNAs and target genes in ischemia/reperfusion injury and apelin-13 neuroprotection. Neural Regeneration Research, 13(2), 265–271. https://doi.org/10.4103/1673-5374.226397
  • Wang, M., Sun, J., Xu, B., Chrusciel, M., Gao, J., Bazert, M., Stelmaszewska, J., Xu, Y., Zhang, H., Pawelczyk, L., Sun, F., Tsang, S. Y., Rahman, N., Wolczynski, S., & Li, X. (2018). Functional characterization of MicroRNA-27a-3p expression in human polycystic ovary syndrome. Endocrinology, 159(1), 297–309. https://doi.org/10.1210/en.2017-00219
  • Xie, F., Liu, W., Feng, F., Li, X., He, L., Lv, D., Qin, X., Li, L., Li, L., & Chen, L. (2015). Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy. Acta Biochimica et Biophysica Sinica, 47(12), 969–980. https://doi.org/10.1093/abbs/gmv111
  • Yang, Y., Hu, Z., Du, X., Davies, H., Huo, X., & Fang, M. (2017). miR-16 and fluoxetine both reverse autophagic and apoptotic change in chronic unpredictable mild stress model rats. Frontiers in Neuroscience, 11, 428. https://doi.org/10.3389/fnins.2017.00428
  • Yin, L., Zhang, P., Li, C., Si, J., Wang, Y., Zhang, X., Zhang, D., Zhang, H., & Lin, C. (2018). Apelin-13 promotes cell proliferation in the H9c2 cardiomyoblast cell line by triggering extracellular signal-regulated kinase 1/2 and protein kinase B phosphorylation. Molecular Medicine Reports, 17(1), 447–451. https://doi.org/10.3892/mmr.2017.7919
  • Zeng, X., Xie, Y. J., Liu, Y. T., Long, S. L., & Mo, Z. C. (2020). Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clinica Chimica Acta; International Journal of Clinical Chemistry, 502, 214–221. https://doi.org/10.1016/j.cca.2019.11.003
  • Zhao, C., Liu, X., Shi, Z., Zhang, J., Zhang, J., Jia, X., & Ling, X. (2015). Role of serum miRNAs in the prediction of ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients. Cellular Physiology and Biochemistry, 35(3), 1086–1094. https://doi.org/10.1159/000373934
  • Zhu, Y., Xia, Y., Niu, H., & Chen, Y. (2014). MiR-16 induced the suppression of cell apoptosis while promote proliferation in esophageal squamous cell carcinoma. Cellular Physiology and Biochemistry, 33(5), 1340–1348. https://doi.org/10.1159/000358701

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.