Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 26, 2023 - Issue 5
164
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Application of artificial neural networks in reproductive medicine

, &
Pages 1195-1201 | Received 14 Dec 2021, Accepted 01 Sep 2022, Published online: 11 Jan 2023

References

  • Akinsal, E. C., Haznedar, B., Baydilli, N., Kalinli, A., Ozturk, A., & Ekmekçioğlu, O. (2018). Artificial neural network for the prediction of chromosomal abnormalities in azoospermic males. Urology Journal, 15(3), 122–125. https://doi.org/10.22037/uj.v0i0.4029
  • Berner, E. S., & La Lande, T. J. (2007). Overview of clinical decision support systems. In E. S. Berner (Eds) Clinical decision support systems. Health informatics (pp. 3–22). Springer.
  • Bertolaccini, L., Solli, P., Pardolesi, A., & Pasini, A. (2017). An overview of the use of artificial neural networks in lung cancer research. Journal of Thoracic Disease, 9(4), 924–931. https://doi.org/10.21037/jtd.2017.03.157
  • Bormann, C. L., Kanakasabapathy, M. K., Thirumalaraju, P., Gupta, R., Pooniwala, R., Kandula, H., Hariton, E., Souter, I., Dimitriadis, I., Ramirez, L. B., Curchoe, C. L., Swain, J., Boehnlein, L. M., & Shafiee, H. (2020). Performance of a deep learning based neural network in the selection of human blastocysts for implantation. eLife, 9, e55301. https://doi.org/10.7554/eLife.55301
  • Cao, Q., Wang, F., & Niu, J. (2020). Optimization of brain tumor medical image segmentation based on 3D convolutional neural network. Modern Electronics Technique, 43(3), 74–77. https://doi.org/10.16652/j.issn.1004-373x.2020.03.018
  • Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care - addressing ethical challenges. The New England Journal of Medicine, 378(11), 981–983. https://doi.org/10.1056/NEJMp1714229
  • Eberhard, M., & Alkadhi, H. (2020). Machine learning and deep neural networks: Applications in patient and scan preparation, contrast medium, and radiation dose optimization. Journal of Thoracic Imaging, 35(Suppl 1), S17–S20. https://doi.org/10.1097/RTI.0000000000000482
  • Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
  • Falavigna, G., Costantino, G., Furlan, R., Quinn, J. V., Ungar, A., & Ippoliti, R. (2019). Artificial neural networks and risk stratification in emergency departments. Internal and Emergency Medicine, 14(2), 291–299. https://doi.org/10.1007/s11739-018-1971-2
  • Grandone, E., Di Micco, P. P., Villani, M., Colaizzo, D., Fernández-Capitán, C., Del Toro, J., Rosa, V., Bura-Riviere, A., Quere, I., Blanco-Molina, Á., Margaglione, M., & Monreal, M, RIETE Investigators (2018). Venous thromboembolism in women undergoing assisted reproductive technologies: Data from the RIETE Registry. Thrombosis and Haemostasis, 118(11), 1962–1968. https://doi.org/10.1055/s-0038-1673402
  • Hamm, C. A., Wang, C. J., Savic, L. J., Ferrante, M., Schobert, I., Schlachter, T., Lin, M., Duncan, J. S., Weinreb, J. C., Chapiro, J., & Letzen, B. (2019). Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. European Radiology, 29(7), 3338–3347. https://doi.org/10.1007/s00330-019-06205-9
  • Hernández-González, J., Inza, I., Crisol-Ortíz, L., Guembe, M. A., Iñarra, M. J., & Lozano, J. A. (2018). Fitting the data from embryo implantation prediction: Learning from label proportions. Statistical Methods in Medical Research, 27(4), 1056–1066. https://doi.org/10.1177/0962280216651098
  • Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T., Ohnishi, T., Fujishiro, M., Matsuo, K., Fujisaki, J., & Tada, T. (2018). Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 21(4), 653–660. https://doi.org/10.1007/s10120-018-0793-2
  • Hu, L., Xie, R., & Sun, Y. (2019). Analysis of risk factors of ovarian hyperstimulation syndrome and prediction of ovarian hyperstimulation syndrome in patients with follicular phase long-acting and long-term promoting ovulation. Chinese Journal of Reproduction and Contraception, 39(11), 874–879. https://doi.org/10.3760/cma.j.issn.2096-2916.2019.11.002
  • Huang, T., Kosasa, T., Walker, B., Arnett, C., Huang, C., Yin, C., Harun, Y., Ahn, H. J., & Ohta, A. (2021). Deep learning neural network analysis of human blastocyst expansion from time-lapse image files. Reproductive Biomedicine Online, 42(6), 1075–1085. https://doi.org/10.1016/j.rbmo.2021.02.015
  • Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics, 7(1), 29. https://doi.org/10.4103/2153-3539.186902
  • Jermyn, M., Desroches, J., Mercier, J., Tremblay, M. A., St-Arnaud, K., Guiot, M. C., Petrecca, K., & Leblond, F. (2016). Neural networks improve brain cancer detection with Raman spectroscopy in the presence of operating room light artifacts. Journal of Biomedical Optics, 21(9), 94002. https://doi.org/10.1117/1.JBO.21.9.094002
  • Kandel, M. E., Rubessa, M., He, Y. R., Schreiber, S., Meyers, S., Matter Naves, L., Sermersheim, M. K., Sell, G. S., Szewczyk, M. J., Sobh, N., Wheeler, M. B., & Popescu, G. (2020). Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proceedings of the National Academy of Sciences of the United States of America, 117(31), 18302–18309. https://doi.org/10.1073/pnas.2001754117
  • Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y. L., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., … Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122–1131.e9. https://doi.org/10.1016/j.cell.2018.02.010
  • Khosravi, P., Kazemi, E., Zhan, Q., Malmsten, J. E., Toschi, M., Zisimopoulos, P., Sigaras, A., Lavery, S., Cooper, L., Hickman, C., Meseguer, M., Rosenwaks, Z., Elemento, O., Zaninovic, N., & Hajirasouliha, I. (2019). Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digital Medicine, 2, 21. https://doi.org/10.1038/s41746-019-0096-y
  • Levi-Setti, P. E., Cirillo, F., Scolaro, V., Morenghi, E., Heilbron, F., Girardello, D., Zannoni, E., & Patrizio, P. (2018). Appraisal of clinical complications after 23,827 oocyte retrievals in a large assisted reproductive technology program. Fertility and Sterility, 109(6), 1038–1043.e1. https://doi.org/10.1016/j.fertnstert.2018.02.002
  • Liang, Y., Li, Q., Chen, P., Xu, L., & Li, J. (2019). Comparative study of back propagation artificial neural networks and logistic regression model in predicting poor prognosis after acute ischemic stroke. Open Medicine, 14, 324–330. https://doi.org/10.1515/med-2019-0030
  • Liu, X., Hou, F., Qin, H., & Hao, A. (2017). A CADe system for nodule detection in thoracic CT images based on artificial neural network. Science China Information Sciences, 60(7), 072106. https://doi.org/10.1007/s11432-016-9008-0
  • Ma, J., Wen, G., Wang, C., & Jiang, L. (2019). Complexity perception classification method for tongue constitution recognition. Artificial Intelligence in Medicine, 96, 123–133. https://doi.org/10.1016/j.artmed.2019.03.008
  • Manna, C., Nanni, L., Lumini, A., & Pappalardo, S. (2013). Artificial intelligence techniques for embryo and oocyte classification. Reproductive Biomedicine Online, 26(1), 42–49. https://doi.org/10.1016/j.rbmo.2012.09.015
  • Mao, W. B., Lyu, J. Y., Vaishnani, D. K., Lyu, Y. M., Gong, W., Xue, X. L., Shentu, Y. P., & Ma, J. (2020). Application of artificial neural networks in detection and diagnosis of gastrointestinal and liver tumors. World Journal of Clinical Cases, 8(18), 3971–3977. https://doi.org/10.12998/wjcc.v8.i18.3971
  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259
  • Miyagi, Y., Habara, T., Hirata, R., & Hayashi, N. (2019). Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image. Reproductive Medicine and Biology, 18(2), 204–211. https://doi.org/10.1002/rmb2.12267
  • Moeskops, P., Viergever, M. A., Mendrik, A. M., de Vries, L. S., Benders, M. J., & Isgum, I. (2016). Automatic segmentation of MR brain images with a convolutional neural network. IEEE Transactions on Medical Imaging, 35(5), 1252–1261. https://doi.org/10.1109/TMI.2016.2548501
  • National Science and Technology Council. (2016). The national artificial intelligence research and development strategic plan. U.S. Government. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjduKGv-ND6AhWWd8AKHXK6A5IQFnoECDgQAQ&url=https%3A%2F%2Fwww.aeaweb.org%2Fforum%2F2341%2Fnational-artificial-intelligence-strategic-invites-update&usg=AOvVaw2sn-1mR1hMTLqKoB7oJ6gu
  • Rea, T., Guillari, A., Sergi, C., & Serra, N. (2020). Mathematical models in nursing research. Journal of Public Health Research, 9(4), 1952. https://doi.org/10.4081/jphr.2020.1952
  • Rocha, J. C., Passalia, F. J., Matos, F. D., Takahashi, M. B., Maserati, M. P., Jr, Alves, M. F., de Almeida, T. G., Cardoso, B. L., Basso, A. C., & Nogueira, M. (2017). Automatized image processing of bovine blastocysts produced in vitro for quantitative variable determination. Scientific Data, 4, 170192. https://doi.org/10.1038/sdata.2017.192
  • Rocha, J. C., Passalia, F., Matos, F. D., Maserati, M. P., Jr, Alves, M. F., Almeida, T. G., Cardoso, B. L., Basso, A. C., & Nogueira, M. F. (2016). Methods for assessing the quality of mammalian embryos: How far we are from the gold standard? JBRA Assisted Reproduction, 20(3), 150–158. https://doi.org/10.5935/1518-0557.20160033
  • Schirmer, D. A., 3rd, Kulkarni, A. D., Zhang, Y., Kawwass, J. F., Boulet, S. L., & Kissin, D. M. (2020). Ovarian hyperstimulation syndrome after assisted reproductive technologies: Trends, predictors, and pregnancy outcomes. Fertility and Sterility, 114(3), 567–578. https://doi.org/10.1016/j.fertnstert.2020.04.004
  • Simopoulou, M., Sfakianoudis, K., Maziotis, E., Antoniou, N., Rapani, A., Anifandis, G., Bakas, P., Bolaris, S., Pantou, A., Pantos, K., & Koutsilieris, M. (2018). Are computational applications the "crystal ball" in the IVF laboratory? The evolution from mathematics to artificial intelligence. Journal of Assisted Reproduction and Genetics, 35(9), 1545–1557. https://doi.org/10.1007/s10815-018-1266-6
  • Siristatidis, C., Vogiatzi, P., Pouliakis, A., Trivella, M., Papantoniou, N., & Bettocchi, S. (2016). Predicting IVF outcome: A proposed web-based system using artificial intelligence. In Vivo, 30(4), 507–512.
  • Uyar, A., Bener, A., & Ciray, H. N. (2015). Predictive modeling of implantation outcome in an in vitro fertilization setting: An application of machine learning methods. Medical Decision Making, 35(6), 714–725. https://doi.org/10.1177/0272989X14535984
  • Vogiatzi, P., Pouliakis, A., & Siristatidis, C. (2019). An artificial neural network for the prediction of assisted reproduction outcome. Journal of Assisted Reproduction and Genetics, 36(7), 1441–1448. https://doi.org/10.1007/s10815-019-01498-7
  • Wang, H., Lu, S., Meng, J., Huang, J., & Lu, C. (2020). Identifying the logical relationship between syndrome elements and syndrome types of gynecological diseases based on artificial neural network technology. Journal of Medical Information, 33(11), 1–4. https://doi.org/10.3969/j.issn.1006-1959.2020.11.001
  • Wang, Z., Li, L., Song, M., Yan, J., Shi, J., & Yao, Y. (2021). Evaluating the traditional Chinese medicine (TCM) officially recommended in China for COVID-19 using ontology-based side-effect prediction framework (OSPF) and deep learning. Journal of Ethnopharmacology, 272, 113957. https://doi.org/10.1016/j.jep.2021.113957
  • Weiss, J., Taron, J., Jin, Z., Mayrhofer, T., Aerts, H., Lu, M. T., & Hoffmann, U. (2021). Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network. Scientific Reports, 11(1), 19586. https://doi.org/10.1038/s41598-021-99107-0
  • Wu, Y., Yao, L., Sheng, W., & Liu, M. (2017). Prediction model of premature ovarian failure based on artificial neural network. Chinese General Practice, 20(27), 3410–3415. https://open-oriprobe-com.translate.goog/articles/52096729/Prediction_Model_of_Premature_Ovarian_Failure_Base.htm?_x_tr_sl=zh-CN&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc&_x_tr_sch=http
  • Xie, N. N., Wang, F. F., Zhou, J., Liu, C., & Qu, F. (2020). Establishment and analysis of a combined diagnostic model of polycystic ovary syndrome with random forest and artificial neural network. BioMed Research International, 2020, 2613091. https://doi.org/10.1155/2020/2613091
  • Yasaka, K., Akai, H., Abe, O., & Kiryu, S. (2018). Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study. Radiology, 286(3), 887–896. https://doi.org/10.1148/radiol.2017170706
  • Yu, Y., Gao, Y., Fang, L., & Sun, Y. (2021). Application of machine learning in in vitro fertilization. Chinese Journal of Reproduction and Contraception, 41(10), 883–892. https://doi.org/10.3760/cma.j.cn101441-20200428-00251
  • Zhao, M., Xu, M., Li, H., Alqawasmeh, O., Chung, J., Li, T. C., Lee, T. L., Tang, P. M., & Chan, D. (2021). Application of convolutional neural network on early human embryo segmentation during in vitro fertilization. Journal of Cellular and Molecular Medicine, 25(5), 2633–2644. https://doi.org/10.1111/jcmm.16288
  • Zhen, S. H., Cheng, M., Tao, Y. B., Wang, Y. F., Juengpanich, S., Jiang, Z. Y., Jiang, Y. K., Yan, Y. Y., Lu, W., Lue, J. M., Qian, J. H., Wu, Z. Y., Sun, J. H., Lin, H., & Cai, X. J. (2020). Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Frontiers in Oncology, 10, 680. https://doi.org/10.3389/fonc.2020.00680

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.