511
Views
19
CrossRef citations to date
0
Altmetric
Review

Drug treatments for prosthetic joint infections in the era of multidrug resistance

, , , &
Pages 1233-1246 | Received 05 Oct 2015, Accepted 05 Apr 2016, Published online: 04 May 2016

References

  • Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004 Apr 1;350(14):1422–1429.
  • Gomez-Barrena E, Esteban J, Medel F, et al. Bacterial adherence to separated modular components in joint prosthesis: a clinical study. J Orthop Res. 2012 Oct;30(10):1634–1639.
  • Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014 Apr;27(2):302–345.
  • Trampuz A, Piper KE, Jacobson MJ, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 2007 Aug 16;357(7):654–663.
  • Esteban J, Sorli L, Alentorn-Geli E, et al. Conventional and molecular diagnostic strategies for prosthetic joint infections. Expert Rev Mol Diagn. 2014 Jan;14(1):83–96.
  • Portillo ME, Salvado M, Alier A, et al. Advantages of sonication fluid culture for the diagnosis of prosthetic joint infection. J Infect. 2014 Jul;69(1):35–41.
  • WHO. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization; 2014.
  • CDC. Antibiotic resistance threatsin the United States, 2013. Atlanta (GA): CDC-Centers for Diseases Control; 2014.
  • European-Centre-for-Disease-Prevention-and-Control. Antimicrobial resistance surveillance in Europe 2013. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2014.
  • Esteban J, Cordero-Ampuero J. Treatment of prosthetic osteoarticular infections. Expert Opin Pharmacother. 2011 Apr;12(6):899–912.
  • Boettner F, Cross MB, Nam D, et al. Functional and emotional results differ after aseptic vs septic revision hip arthroplasty. HSS J. 2011 Oct;7(3):235–238.
  • Cobo J, Del Pozo JL. Prosthetic joint infection: diagnosis and management. Expert Rev Anti Infect Ther. 2011 Sep;9(9):787–802.
  • Ibrahim MS, Raja S, Khan MA, et al. A multidisciplinary team approach to two-stage revision for the infected hip replacement: a minimum five-year follow-up study. Bone Joint J. 2014 Oct;96–B(10):1312–1318.
  • Barnes PD. Creating an orthopedic infection team. AAOS/ORS Musculoskeletal Infection: Where are we in 2014? Research Symposium; 2014. May 8–10, Rosemont, IL.
  • NHS. 2013/14 NHS STANDARDT contract for bone and joint infection service specification (Adult); 2013 [cited 2015 Oct 5]. Available from: http://www.england.nhs.uk/wp-content/uploads/2013/06/b07-bone-joint-infec.pdf
  • Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987 Sep 25;237(4822):1588–1595.
  • Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006 May;37(Suppl 2):S59–S66.
  • Bogut A, Niedzwiadek J, Strzelec-Nowak D, et al. Infectious prosthetic hip joint loosening: bacterial species involved in its aetiology and their antibiotic resistance profiles against antibiotics recommended for the therapy of implant-associated infections. New Microbiol. 2014 Apr;37(2):209–218.
  • Kawamura H, Nishi J, Imuta N, et al. Quantitative analysis of biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) strains from patients with orthopaedic device-related infections. FEMS Immunol Med Microbiol. 2011 Oct;63(1):10–15.
  • Schwank S, Rajacic Z, Zimmerli W, et al. Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics. Antimicrob Agents Chemother. 1998 Apr;42(4):895–898.
  • Molina-Manso D, del Prado G, Ortiz-Perez A, et al. In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int J Antimicrob Agents. 2013 Jun;41(6):521–523.
  • Tang HJ, Chen CC, Cheng KC, et al. In vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013 Nov;57(11):5717–5720.
  • Trebse R, Pisot V, Trampuz A. Treatment of infected retained implants. J Bone Joint Surg Br. 2005 Feb;87(2):249–256.
  • Chuard C, Herrmann M, Vaudaux P, et al. Successful therapy of experimental chronic foreign-body infection due to methicillin-resistant Staphylococcus aureus by antimicrobial combinations. Antimicrob Agents Chemother. 1991 Dec;35(12):2611–2616.
  • Murillo O, Domenech A, Garcia A, et al. Efficacy of high doses of levofloxacin in experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2006 Dec;50(12):4011–4017.
  • Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004 Oct 14;351(16):1645–1654.
  • Perlroth J, Kuo M, Tan J, et al. Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Arch Intern Med. 2008 Apr 28;168(8):805–819.
  • Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2013;56(1):e1–e25.
  • Nguyen S, Pasquet A, Legout L, et al. Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin Microbiol Infect. 2009 Dec;15(12):1163–1169.
  • Tang HJ, Chen CC, Ko WC, et al. In vitro efficacy of antimicrobial agents against high-inoculum or biofilm-embedded meticillin-resistant Staphylococcus aureus with vancomycin minimal inhibitory concentrations equal to 2 mug/mL (VA2-MRSA). Int J Antimicrob Agents. 2011 Jul;38(1):46–51.
  • Lucet JC, Herrmann M, Rohner P, et al. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1990 Dec;34(12):2312–2317.
  • Tang HJ, Chen CC, Cheng KC, et al. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother. 2012 Apr;67(4):944–950.
  • Raad I, Hanna H, Jiang Y, et al. Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother. 2007 May;51(5):1656–1660.
  • Wu WS, Chen CC, Chuang YC, et al. Efficacy of combination oral antimicrobial agents against biofilm-embedded methicillin-resistant Staphylococcus aureus. J Microbiol Immunol Infect. 2013 Apr;46(2):89–95.
  • Tang HJ, Chen CC, Zhang CC, et al. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn Microbiol Infect Dis. 2013 Nov;77(3):254–257.
  • Morata L, Senneville E, Bernard L, et al. A retrospective review of the clinical experience of linezolid with or without rifampicin in prosthetic joint infections treated with debridement and implant retention. Infect Dis Ther. 2014 Dec;3(2):235–243.
  • Rao N, Hamilton CW. Efficacy and safety of linezolid for Gram-positive orthopedic infections: a prospective case series. Diagn Microbiol Infect Dis. 2007 Oct;59(2):173–179.
  • Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013;56(2):182–194.
  • Gomez SL, Raysth W, Palma A, et al. Three aryl-substituted tetrahydro-1,4-epoxy-1-benzazepines: hydrogen-bonded structures in two or three dimensions. Acta Crystallogr C. 2008 Sep;64(Pt 9):o519–o523.
  • Gandelman K, Zhu T, Fahmi OA, et al. Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. J Clin Pharmacol. 2011;51(2):229–236.
  • Gebhart BC, Barker BC, Markewitz BA. Decreased serum linezolid levels in a critically ill patient receiving concomitant linezolid and rifampin. Pharmacotherapy. 2007 Mar;27(3):476–479.
  • John AK, Baldoni D, Haschke M, et al. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009 Jul;53(7):2719–2724.
  • Van Bambeke F. Lipoglycopeptide antibacterial agents in gram-positive infections: a comparative review. Drugs. 2015;75(18):2073–2095.
  • Twilla JD, Gelfand MS, Cleveland KO, et al. Telavancin for the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis. J Antimicrob Chemother. 2011;66(11):2675–2677.
  • Chan C, Hardin TC, Smart JI. A review of telavancin activity in in vitro biofilms and animal models of biofilm-associated infections. Future Microbiol. 2015;10(8):1325–1338.
  • Fala L. Sivextro (Tedizolid Phosphate) approved for the treatment of adults with acute bacterial skin and skin-structure infections. Am Health Drug Benefits. 2015;8(Spec Feature):111–115.
  • Sia IG, Berbari EF, Karchmer AW. Prosthetic joint infections. Infect Dis Clin North Am. 2005 Dec;19(4):885–914.
  • Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000 Oct;13(4):686–707.
  • Sandoe JA, Wysome J, West AP, et al. Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. J Antimicrob Chemother. 2006 Apr;57(4):767–770.
  • Furustrand Tafin U, Majic I, Zalila Belkhodja C, et al. Gentamicin improves the activities of daptomycin and vancomycin against Enterococcus faecalis in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2011 Oct;55(10):4821–4827.
  • El Helou OC, Berbari EF, Marculescu CE, et al. Outcome of enterococcal prosthetic joint infection: is combination systemic therapy superior to monotherapy? Clin Infect Dis. 2008 Oct 1;47(7):903–909.
  • Pericas JM, Cervera C, del Rio A, et al. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: from ampicillin plus gentamicin to ampicillin plus ceftriaxone. Clin Microbiol Infect Dec. 2014;20(12):O1075–O1083.
  • Oliva A, Furustrand Tafin U, Maiolo EM, et al. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(3):1284–1293.
  • Raz R. Fosfomycin: an old–new antibiotic. Clin Microbiol Infect. 2012 Jan;18(1):4–7.
  • Hall Snyder A, Werth BJ, Barber KE, et al. Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. J Antimicrob Chemother. 2014;69(8):2148–2154.
  • Hindler JA, Wong-Beringer A, Charlton CL, et al. In vitro activity of daptomycin in combination with β-Lactams, gentamicin, rifampin, and tigecycline against daptomycin-nonsusceptible enterococci. Antimicrob Agents Chemother. 2015 Jul;59(7):4279–4288.
  • Sendi P, Frei R, Maurer TB, et al. Escherichia coli variants in periprosthetic joint infection: diagnostic challenges with sessile bacteria and sonication. J Clin Microbiol. 2010 May;48(5):1720–1725.
  • Corvec S, Furustrand Tafin U, Betrisey B, et al. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-beta-lactamase-producing Escherichia coli in a foreign-body infection model. Antimicrob Agents Chemother. 2013 Mar;57(3):1421–1427.
  • Entenza JM, Moreillon P. Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int J Antimicrob Agents. 2009 Jul;34(1):e1–9.
  • Cobo J, Morosini MI, Pintado V, et al. Use of tigecycline for the treatment of prolonged bacteremia due to a multiresistant VIM-1 and SHV-12 beta–lactamase-producing Klebsiella pneumoniae epidemic clone. Diagn Microbiol Infect Dis. 2008 Mar;60(3):319–322.
  • da Silva RM, Traebert J, Galato D. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert Opin Biol Ther. 2012 Jun;12(6):663–671.
  • Lee GC, Burgess DS Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob 2012;11:32.
  • Michail G, Labrou M, Pitiriga V, et al. Activity of tigecycline in combination with colistin, meropenem, rifampin, or gentamicin against KPC-producing enterobacteriaceae in a murine thigh infection model. Antimicrob Agents Chemother. 2013 Dec;57(12):6028–6033.
  • Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel beta-lactam/beta-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2015;46(3):266–271.
  • Chan C, Burrows LL, Deber CM. Helix induction in antimicrobial peptides by alginate in biofilms. J Biol Chem. 2004 Sep 10;279(37):38749–38754.
  • Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol. 2001 Dec;183(23):6746–6751.
  • Wimmer MD, Randau TM, Petersdorf S, et al. Evaluation of an interdisciplinary therapy algorithm in patients with prosthetic joint infections. Int Orthop. 2013 Nov;37(11):2271–2278.
  • Tanaka G, Shigeta M, Komatsuzawa H, et al. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: beta-lactams and fluoroquinolones. Chemotherapy. 1999 Jan-Feb;45(1):28–36.
  • Yassien M, Khardori N, Ahmedy A, et al. Modulation of biofilms of Pseudomonas aeruginosa by quinolones. Antimicrob Agents Chemother. 1995 Oct;39(10):2262–2268.
  • Brouqui P, Rousseau MC, Stein A, et al. Treatment of Pseudomonas aeruginosa-infected orthopedic prostheses with ceftazidime-ciprofloxacin antibiotic combination. Antimicrob Agents Chemother. 1995 Nov;39(11):2423–2425.
  • Legout L, Senneville E, Stern R, et al. Treatment of bone and joint infections caused by Gram-negative bacilli with a cefepime-fluoroquinolone combination. Clin Microbiol Infect. 2006 Oct;12(10):1030–1033.
  • Berbari EF, Hanssen AD, Duffy MC, et al. Prosthetic joint infection due to Mycobacterium tuberculosis: a case series and review of the literature. Am J Orthop (Belle Mead NJ). 1998 Mar;27(3):219–227.
  • Kim S-J, Kim JH. Late onset Mycobacterium tuberculosis infection after total knee arthroplasty: a systematic review and pooled analysis. Scand J Infect Dis. 2013 Dec;45(12):907–914.
  • Lee CL, Wei YS, Ho YJ, et al. Postoperative Mycobacterium tuberculosis infection after total knee arthroplasty. Knee. 2009 Jan;16(1):87–89.
  • Perez-Jorge C, Valdazo-Rojo M, Blanco-Garcia A, et al. Mycobacterium tuberculosis as cause of therapeutic failure in prosthetic joint infections. Enferm Infecc Microbiol Clin. 2014 Mar;32(3):204–205.
  • Eid AJ, Berbari EF, Sia IG, et al. Prosthetic joint infection due to rapidly growing mycobacteria: report of 8 cases and review of the literature. Clin Infect Dis. 2007 Sep 15;45(6):687–694.
  • Petrosoniak A, Kim P, Desjardins M, et al. Successful treatment of a prosthetic joint infection due to Mycobacterium abscessus. Can J Infect Dis Med Microbiol. 2009 Fall;20(3):e94–e96.
  • Munoz-Egea MC, Garcia-Pedrazuela M, Esteban J. [In vitro susceptibility of rapidly growing mycobacteria biofilms against different antimicrobials]. Enferm Infecc Microbiol Clin. 2015 Feb;33(2):136–137.
  • Richards JP, Ojha AK. Mycobacterial biofilms. Microbiol Spectr. 2014 Oct;2(5):1–11.
  • Zambrano MM, Kolter R. Mycobacterial biofilms: a greasy way to hold it together. Cell. 2005 Dec 2;123(5):762–764.
  • American Thoracic Society; CDC; Infectious Diseases Society of America. The treatment of tuberculosis. MMWR Recomm Rep. 2003 Jun 20;52(RR-11):1–77.
  • CDC. CDC issues guidelines for multidrug-resistant tuberculosis. Am Fam Physician. 1992 Oct;46(4):1303–1305.
  • Chaisson RE, Nuermberger EL. Confronting multidrug-resistant tuberculosis. N Engl J Med. 2012 Jun 7;366(23):2223–2224.
  • Garcia-Cia JI, Esteban J. [Osteoarticular infections due to mycobacteria in a university hospital]. Enferm Infecc Microbiol Clin. 2006 Dec;24(10):661–663.
  • Martin-de-Hijas NZ, Garcia-Almeida D, Ayala G, et al. Biofilm development by clinical strains of non-pigmented rapidly growing mycobacteria. Clin Microbiol Infect. 2009 Oct;15(10):931–936.
  • Brown-Elliott BA, Wallace RJ Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev. 2002 Oct;15(4):716–746.
  • Wallace RJ Jr. Recent changes in taxonomy and disease manifestations of the rapidly growing mycobacteria. Eur J Clin Microbiol Infect Dis. 1994 Nov;13(11):953–960.
  • Munoz-Egea MC, Garcia-Pedrazuela M, Mahillo I, et al. Effect of ciprofloxacin in the ultrastructure and development of biofilms formed by rapidly growing mycobacteria. BMC Microbiol. 2015;15:18.
  • Munoz-Egea MC, Garcia-Pedrazuela M, Mahillo-Fernandez I, et al. Effect of antibiotics and antibiofilm agents in the ultrastructure and development of biofilms developed by nonpigmented rapidly growing mycobacteria. Microb Drug Resist. 2016 Jan;22(1):1–6.
  • Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of America. Clin Infect Dis. 2009 Mar 1;48(5):503–535.
  • Kuiper JW, van den Bekerom MP, van der Stappen J, et al. 2-stage revision recommended for treatment of fungal hip and knee prosthetic joint infections. Acta Orthop Dec. 2013;84(6):517–523.
  • Hoiby N. A personal history of research on microbial biofilms and biofilm infections. Pathog Dis. 2014 Apr;70(3):205–211.
  • Hoiby N, Bjarnsholt T, Moser C, et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21(Suppl 1):S1–S25.
  • Stoodley P, Ehrlich GD, Sedghizadeh PP, et al. Orthopaedic biofilm infections. Curr Orthop Pract. 2011 Nov;22(6):558–563.
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004 Feb;2(2):95–108.
  • Esteban J, Perez-Tanoira R, Perez-Jorge C, et al. Bacterial adherence to biomaterials used in surgical procedures. In: Kon K, Rai M, editors. Microbiology for surgical infections diagnosis, prognosis and treatment. 1st ed. London: Elsevier; 2014. p. 41–57.
  • Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2015;21(1):5–11.
  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002 Sep;8(9):881–890.
  • Riool M, de Boer L, Jaspers V, et al. Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomater. 2014 Dec;10(12):5202–5212.
  • Jolivet-Gougeon A, Bonnaure-Mallet M. Biofilms as a mechanism of bacterial resistance. Drug Discov Today Technol. 2014 Mar;11:49–56.
  • Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001 Jan;9(1):34–39.
  • Bales PM, Renke EM, May SL, et al. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One. 2013;8(6):e67950.
  • Bowden GH, Li YH. Nutritional influences on biofilm development. Adv Dent Res. 1997 Apr;11(1):81–99.
  • Campoccia D, Montanaro L, Ravaioli S, et al. Exopolysaccharide production by Staphylococcus epidermidis and its relationship with biofilm extracellular DNA. Int J Artif Organs. 2011 Sep;34(9):832–839.
  • Cogan NG, Keener JP. The role of the biofilm matrix in structural development. Math Med Biol. 2004 Jun;21(2):147–166.
  • Dunny GM, Hancock LE, Shankar N. Enterococcal biofilm structure and role in colonization and disease. In: Gilmore MS, Clewell DB, Ike Y, et al., editors. Enterococci: from commensals to leading causes of drug resistant infection. Boston (MA): Massachusetts Eye and Ear Infirmary; 2014.
  • Jabbouri S, Sadovskaya I. Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication of Staphylococcus epidermidis associated with medical implant infections. FEMS Immunol Med Microbiol. 2010 Aug;59(3):280–291.
  • Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 2012 Jul;36(4):893–916.
  • Ojha AK, Jacobs WR Jr., Hatfull GF. Genetic dissection of mycobacterial biofilms. Methods Mol Biol. 2015;1285:215–226.
  • Bulut F, Meric F, Yorgancilar E, et al. Effects of N-acetyl-cysteine and acetylsalicylic acid on the tonsil bacterial biofilm tissues by light and electron microscopy. Eur Rev Med Pharmacol Sci. 2014;18(23):3720–3725.
  • Aslam S, Trautner BW, Ramanathan V, et al. Combination of tigecycline and N-acetylcysteine reduces biofilm-embedded bacteria on vascular catheters. Antimicrob Agents Chemother. 2007 Apr;51(4):1556–1558.
  • del Prado G, Ruiz V, Naves P, et al. Biofilm formation by Streptococcus pneumoniae strains and effects of human serum albumin, ibuprofen, N-acetyl-l-cysteine, amoxicillin, erythromycin, and levofloxacin. Diagn Microbiol Infect Dis. 2010 Aug;67(4):311–318.
  • Drago L, De Vecchi E, Mattina R, et al. Activity of N-acetyl-L-cysteine against biofilm of Staphylococcus aureus and Pseudomonas aeruginosa on orthopedic prosthetic materials. Int J Artif Organs. 2013 Jan;36(1):39–46.
  • El-Feky MA, El-Rehewy MS, Hassan MA, et al. Effect of ciprofloxacin and N-acetylcysteine on bacterial adherence and biofilm formation on ureteral stent surfaces. Pol J Microbiol. 2009;58(3):261–267.
  • Naves P, Del Prado G, Huelves L, et al. Effects of human serum albumin, ibuprofen and N-acetyl-L-cysteine against biofilm formation by pathogenic Escherichia coli strains. J Hosp Infect. 2010 Oct;76(2):165–170.
  • Olofsson A-C, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol. 2003 Aug;69(8):4814–4822.
  • Perez-Giraldo C, Rodriguez-Benito A, Moran FJ, et al. Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother. 1997 May;39(5):643–646.
  • Quah SY, Wu S, Lui JN, et al. N-acetylcysteine inhibits growth and eradicates biofilm of Enterococcus faecalis. J Endod. 2012 Jan;38(1):81–85.
  • Brown HL, Reuter M, Hanman K, et al. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS One. 2015;10(3):e0121680.
  • Nemoto K, Hirota K, Murakami K, et al. Effect of varidase (streptodornase) on biofilm formed by Pseudomonas aeruginosa. Chemotherapy. 2003 Jun;49(3):121–125.
  • Schreiberova O, Hedbavna P, Cejkova A, et al. Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants. N Biotechnol. 2012 Nov 15;30(1):62–68.
  • Toutain-Kidd CM, Kadivar SC, Bramante CT, et al. Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob Agents Chemother. 2009 Jan;53(1):136–145.
  • Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol. 1995 Sep;15(3):162–168.
  • Gov Y, Bitler A, Dell’Acqua G, et al. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis. Peptides. 2001 Oct;22(10):1609–1620.
  • Balaban N, Cirioni O, Giacometti A, et al. Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother. 2007 Jun;51(6):2226–2229.
  • Defoirdt T, Brackman G, Coenye T. Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol. 2013 Dec;21(12):619–624.
  • Brackman G, Cos P, Maes L, et al. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2011 Jun;55(6):2655–2661.
  • Irwin NJ, McCoy CP, Carson L. Effect of pH on the in vitro susceptibility of planktonic and biofilm-grown Proteus mirabilis to the quinolone antimicrobials. J Appl Microbiol. 2013 Aug;115(2):382–389.
  • Manavathu EK, Vager DL, Vazquez JA. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. BMC Microbiol. 2014;14:53.
  • Masadeh MM, Mhaidat NM, Alzoubi KH, et al. In vitro determination of the antibiotic susceptibility of biofilm-forming Pseudomonas aeruginosa and Staphylococcus aureus: possible role of proteolytic activity and membrane lipopolysaccharide. Infect Drug Resist. 2013;6:27–32.
  • Naves P, Del Prado G, Ponte C, et al. Differences in the in vitro susceptibility of planktonic and biofilm-associated Escherichia coli strains to antimicrobial agents. J Chemother. 2010 Oct;22(5):312–317.
  • Ponnusamy P, Natarajan V, Sevanan M. In vitro biofilm formation by uropathogenic Escherichia coli and their antimicrobial susceptibility pattern. Asian Pac J Trop Med. 2012 Mar;5(3):210–213.
  • Silva JO, Martins Reis AC, Quesada-Gomez C, et al. In vitro effect of antibiotics on biofilm formation by Bacteroides fragilis group strains isolated from intestinal microbiota of dogs and their antimicrobial susceptibility. Anaerobe. 2014;28:24–28.
  • Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014 Oct;20(10):981–990.
  • Anagnostakos K, Furst O, Kelm J. Antibiotic-impregnated PMMA hip spacers: current status. Acta Orthop. 2006 Aug;77(4):628–637.
  • Cabo J, Euba G, Saborido A, et al. Clinical outcome and microbiological findings using antibiotic-loaded spacers in two-stage revision of prosthetic joint infections. J Infect. 2011 Jul;63(1):23–31.
  • Magnan B, Regis D, Biscaglia R, et al. Preformed acrylic bone cement spacer loaded with antibiotics: use of two-stage procedure in 10 patients because of infected hips after total replacement. Acta Orthop Scand. 2001 Dec;72(6):591–594.
  • Themistocleous G, Zalavras C, Stine I, et al. Prolonged implantation of an antibiotic cement spacer for management of shoulder sepsis in compromised patients. J Shoulder Elbow Surgy. 2007 Nov-Dec;16(6):701–705.
  • Borgquist L, Dahl AW, Dale H, et al. Prosthetic joint infections: a need for health economy studies. Acta Orthop. 2014 Jun;85(3):218–220.
  • Anagnostakos K, Kelm J, Regitz T, et al. In vitro evaluation of antibiotic release from and bacteria growth inhibition by antibiotic-loaded acrylic bone cement spacers. J Biomed Mater Res B Appl Biomater. 2005 Feb 15;72(2):373–378.
  • Yamashita Y, Uchida A, Yamakawa T, et al. Treatment of chronic osteomyelitis using calcium hydroxyapatite ceramic implants impregnated with antibiotic. Int Orthop. 1998;22(4):247–251.
  • Kawanabe K, Okada Y, Matsusue Y, et al. Treatment of osteomyelitis with antibiotic-soaked porous glass ceramic. J Bone Joint Surg Br. 1998 May;80(3):527–530.
  • Korkusuz F, Uchida A, Shinto Y, et al. Experimental implant-related osteomyelitis treated by antibiotic-calcium hydroxyapatite ceramic composites. J Bone Joint Surg Br. 1993 Jan;75(1):111–114.
  • Molina-Manso D, Manzano M, Doadrio JC, et al. Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report. Int J Antimicrob Agents. 2012 Sep;40(3):252–256.
  • Hanovcova I, Urban K. [Dynamics of antibiotic release from glass ceramic material.]. Acta Chir Orthop Traumatol Cech. 1998;65(1):24–30.
  • Doadrio AL, Sousa EM, Doadrio JC, et al. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release. 2004 May 31;97(1):125–132.
  • Kinnari TJ, Esteban J, Gomez-Barrena E, et al. Bacterial adherence to SiO2-based multifunctional bioceramics. J Biomed Mater Res A. 2009 Apr;89(1):215–223.
  • Kinnari TJ, Esteban J, Martin-de-Hijas NZ, et al. Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics. J Med Microbiol. 2009 Jan;58(Pt 1):132–137.
  • Cordero J, Munuera L, Folgueira MD. Influence of metal implants on infection. An experimental study in rabbits. J Bone Joint Surg Br. 1994 Sep;76(5):717–720.
  • Cordero J, Munuera L, Folgueira MD. The influence of the chemical composition and surface of the implant on infection. Injury. 1996;27(Suppl 3):SC34–SC37.
  • Van Wieren EM, Seymour MD, Peterson JW. Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: adsorption and breakdown. Sci Total Environ. 2012 Dec;15(441):1–9.
  • Yao C, Webster TJ. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J Biomed Mater Res B Appl Biomater. 2009 Nov;91(2):587–595.
  • Stigter M, Bezemer J, de Groot K, et al. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release. 2004 Sep 14;99(1):127–137.
  • Del Prado G, Terriza A, Ortiz-Perez A, et al. DLC coatings for UHMWPE: relationship between bacterial adherence and surface properties. J Biomed Mater Res A. 2012 Oct;100(10):2813–2820.
  • Perez-Tanoira R, Garcia-Pedrazuela M, Hyyrynen T, et al. Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions. J Mater Sci Mater Med. 2015 Sep;26(9):239.
  • Arenas MA, Perez-Jorge C, Conde A, et al. Doped TiO2 anodic layers of enhanced antibacterial properties. Colloids Surf B Biointerfaces. 2013 May 1;105:106–112.
  • Perez-Jorge C, Conde A, Arenas MA, et al. In vitro assessment of Staphylococcus epidermidis and Staphylococcus aureus adhesion on TiO(2) nanotubes on Ti-6Al-4V alloy. J Biomed Mater Res A. 2012 Jul;100(7):1696–1705.
  • Perez-Tanoira R, Perez-Jorge C, Endrino JL, et al. Bacterial adhesion on biomedical surfaces covered by micrometric silver Islands. J Biomed Mater Res A. 2012 Jun;100(6):1521–1528.
  • Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013 Nov;34(34):8533–8554.
  • Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013 Nov;34(33):8018–8029.
  • De-la-Fuente M, Martinez-Perez M, Gonzalez-Pallares I, et al. Detection of polyclonality among clinical isolates from prosthetic joint infections. J Clin Microbiol. 2015 Dec;53(12):3766–3772.
  • Cordero-Ampuero J, Esteban J, Garcia-Rey E. Results after late polymicrobial, gram-negative, and methicillin-resistant infections in knee arthroplasty. Clin Orthop Relat Res. 2010 May;468(5):1229–1236.
  • Cordero-Ampuero J, Esteban J, Garcia-Cimbrelo E. Oral antibiotics are effective for highly resistant hip arthroplasty infections. Clin Orthop Relat Res. 2009 Sep;467(9):2335–2342.
  • Kurtz SM, Lau E, Schmier J, et al. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty. 2008 Oct;23(7):984–991.
  • Kurtz SM, Ong KL, Lau E, et al. Prosthetic joint infection risk after TKA in the medicare population. Clin Orthop Relat Res. 2010 Jan;468(1):52–56.
  • Rodriguez-Pardo D, Pigrau C, Lora-Tamayo J, et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014 Nov;20(11):O911–O919.
  • Tornero E, Senneville E, Euba G, et al. Characteristics of prosthetic joint infections due to Enterococcus sp. and predictors of failure: a multi-national study. Clin Microbiol Infect. 2014 Nov;20(11):1219–1224.
  • Zand JM. Ampicillin: drug information [Internet]. Annual: Uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Mensa J, Gatell JM, García-Sánchez JE, et al. Guía terapéutica antimicrobiana. Barcelona (Spain): Antares; 2015.
  • Geddes AMG, Ampicillin IM. Amoxicillin and other ampicillin-like penicillins. In: Grayson ML, editor. Kucer´s the use of antibiotics. London: Edward Arnold; 2010.
  • Savarese DMF, Zand JM. Liposomal amphotericin B: drug information [Internet]. Annual. 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Collette N, van der Auwera P, Lopez AP, et al. Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B-deoxycholate. Antimicrob Agents Chemother. 1989 Mar;33(3):362–368.
  • Zand DMSJM. Ceftazidime: drug information [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2013;56(1):e1–e25.
  • Raymakers JT, Schaper NC, van der Heyden JJ, et al. Penetration of ceftazidime into bone from severely ischaemic limbs. J Antimicrob Chemother. 1998 Oct;42(4):543–545.
  • Endimiani A. Ceftazidime. In: Graison ML, editor. Kucer´s the use of antibiotics. London: Edward Arnold; 2010. p. 405–421.
  • Savarese DMF, Zand JM. Cefepime: druginformation [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Breilh D, Boselli E, Bel JC, et al. Diffusion of cefepime into cancellous and cortical bone tissue. J Chemother. 2003 Apr;15(2):134–138.
  • Savarese DMF, Zand JM. Ciprofloxacin: drugInformation [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • McCormack J, Grayson ML. Ciprofloxacin. In: Grayson ML, editor. Kucer´s the use of antibiotics. 6th ed. London: Edward Arnold; 2010. p. 1265–1346.
  • MacLaren G. Colistin: an overview [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Li RLNJ. Colistin. In: Grayson ML, editor. Kucer´s the use of antibiotics. London: Edward Arnold; 2010. p. 955–970.
  • Savarese DMF, Zand JM. Trimethoprim-sulfamethoxazole (co-trimoxazole): druginformation [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Jacobs RF, Wilson CB. Intracellular penetration and antimicrobial activity of antibiotics. J Antimicrob Chemother. 1983 Oct;12(Suppl C):13–20.
  • Rodriguez-Martinez JM, Ballesta S, Pascual A. Activity and penetration of fosfomycin, ciprofloxacin, amoxicillin/clavulanic acid and co-trimoxazole in Escherichia coli and Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents. 2007 Oct;30(4):366–368.
  • Savarese DMF, Zand JM. Daptomycin: drug information [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Montange D, Berthier F, Leclerc G, et al. Penetration of daptomycin into bone and synovial fluid in joint replacement. Antimicrob Agents Chemother. 2014 Jul;58(7):3991–3996.
  • Lewis RE, Kontoyiannis DP. Echinochandin. In: Grayson ML, editor. Kucer´s the use of antibiotics. London: Edward Arnold; 2010. p. 1739–1762.
  • Gonzalez-Martin J, Garcia-Garcia JM, Anibarro L, et al. [Consensus document on the diagnosis, treatment and prevention of tuberculosis]. Enferm Infecc Microbiol Clin. 2010;28(5):e1–20.
  • Elliott AM, Berning SE, Iseman MD, et al. Failure of drug penetration and acquisition of drug resistance in chronic tuberculous empyema. Tuber Lung Dis. 1995 Oct;76(5):463–467.
  • Savarese DMF, Zand JM. Fluconazole: druginformation [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • O’Meeghan T, Varcoe R, Thomas M, et al. Fluconazole concentration in joint fluid during successful treatment of Candida albicans septic arthritis. J Antimicrob Chemother. 1990 Oct;26(4):601–602.
  • Savarese DMF, Zand JM. Fosfomycin [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011 Nov;15(11):e732–9.
  • Frimodt-Moller N. Fusidic acid. In: Grayson ML, editor. Juce´s the use of antibiotics. London: Edward Arnold; 2010. p. 945–954.
  • Savarese DMF, Zand JM. Gentamicin systemic: drug information [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Dee TH, Kozin F. Gentamicin and tobramycin penetration into synovial fluid. Antimicrob Agents Chemother. 1977 Oct;12(4):548–549.
  • Robson JM, Sullivan FM. Antituberculosis drugs. Pharmacol Rev. 1963 Jun;15:169–223.
  • Savarese DMF, Zand JM. Levofloxacin: druginformation [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • von Baum H, Bottcher S, Abel R, et al. Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int J Antimicrob Agents. 2001 Oct;18(4):335–340.
  • Savarese DMF, Zand JM. Linezolid: druginformation [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Kutscha-Lissberg F, Hebler U, Muhr G, et al. Linezolid penetration into bone and joint tissues infected with methicillin-resistant staphylococci. Antimicrob Agents Chemother. 2003 Dec;47(12):3964–3966.
  • Savarese DMF, Zand JM. Minocycline: drug information [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Horrevorts AM. Minocycline. In: Arnold E, editor. Kucer´s the use of antibiotics. 6th ed. London: M Linsay Grayson; 2010. p. 870–880.
  • Savarese DMF, Zand JM. Moxifloxacin systemic: drug information [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Stuart RL. Moxifloxacin. In: Grayson ML, editor. Kucer´s the use of antibiotics. London: Edward Arnold; 2010. p. 1412–1428.
  • Budha NR, Lee RE, Meibohm B. Biopharmaceutics, pharmacokinetics and pharmacodynamics of antituberculosis drugs. Curr Med Chem. 2008;15(8):809–825.
  • Savarese DMF, Zand JM. Rifampin: drug information [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Korman ACSTM. Rifampin. In: Grayson ML, editor. Kucer´s the use of antibiotics. London: Edward Arnold; 2010. p. 1585–1626.
  • Gyssens IC. Teicoplanin. In: Grayson ML, editor. Kucer´s the use of antibiotics. London: Edward Arnold; 2010. p. 601–620.
  • Savarese DMF, Zand JM. Tygecicline [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Gotfried MH, Rodvold KA, Cwik M, et al. An open-label clinical evaluation of tigecycline (TGC) concentrations in selected tissues and fluids. Clin Pharmacol Ther. 2005;77:98.
  • Savarese DMF, Zand JM. Vancomycin: drug information [Internet]. Annual: uptodate 2015 [cited Sep 20]. Available from: http://www.uptodate.com
  • Graziani AL, Lawson LA, Gibson GA, et al. Vancomycin concentrations in infected and noninfected human bone. Antimicrob Agents Chemother. 1988 Sep;32(9):1320–1322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.