237
Views
6
CrossRef citations to date
0
Altmetric
Review

Tuberculosis therapy for 2016 and beyond

&
Pages 1859-1872 | Received 03 May 2016, Accepted 18 Jul 2016, Published online: 19 Aug 2016

References

  • Lauzardo M, Peloquin CA. Antituberculosis therapy for 2012 and beyond. Expert Opinion on Pharmacotherapy. 2012;13(4):511–526.
  • WHO. Global tuberculosis report 2015 [Internet]. [ cited 2016 Apr 3]. Available from: http://www.who.int/tb/publications/global_report/en/
  • World Health Organization global tuberculosis report. 2015. Available from: http://www.who.int/tb/publications/global_report/en/
  • Combs DL, O’Brien RJ, Geiter LJ. USPHS tuberculosis short-course chemotherapy trial 21: effectiveness, toxicity, and acceptability. The report of final results. Annals of Internal Medicine. 1990 Mar 15; 112(6):397–406.
  • Cohn DL, Catlin BJ, Peterson KL, et al. A 62-dose, 6-month therapy for pulmonary and extrapulmonary tuberculosis. Annals of Internal Medicine. 1990 Mar 15;112(6):407–415.
  • Wells C. Global impact of multidrug-resistant pulmonary tuberculosis among HIV-infected and other immunocompromised hosts: epidemiology, diagnosis, and strategies for management. Curr Infect Dis Rep. 2010;12(3):192–197.
  • Tam CM, Chan SL, Lam CW, et al. Rifapentine and isoniazid in the continuation phase of treating pulmonary tuberculosis. Initial report. Am J Respir Crit Care Med. 1998;157(6):1726–1733.
  • Vernon A, Burman W, Benator D, et al. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Lancet. 1999;353(9167):1843–1847.
  • WHO. Tuberculosis (TB) [Internet]. [ cited 2016 Apr 4]. Available from: http://www.who.int/tb/areas-of-work/drug-resistant-tb/en/
  • Bloemberg G, Stucki D, Latshang T, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med. 2015;373:1986–1988.
  • Lalloo U. Short-course Bangladesh regimen for multidrug-resistant tuberculosis: a step in the right direction? Int J Tuberc Lung Dis. 2014;18(10):1137–1138.
  • Van Deun A, Maug AKJ, Salim MAH, et al. Short, highly effective and inexpensive standardized treatment of multi drug resistant tuberculosis. Am J Respir Crit Care Med. 2010;182:684–692.
  • Mitchison DA, Nunn AJ. Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1986;133:423–430.
  • Hong Kong Chest Service, British Medical Research Council. Five-year follow-up of a controlled trial of five 6-month regimens of chemotherapy for pulmonary tuberculosis. Am Rev Respir Dis. 1987;136:1339–1342.
  • Hong Kong Chest Service, British Medical Research Council. Controlled trial of 6-month and 9-month regimens of daily and intermittent streptomycinplus isoniazid plus pyrazinamide for pulmonary tuberculosis in Hong Kong. Am Rev Respir Dis. 1977;115:727–735.
  • Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381(9871):1021–1028.
  • Calmette A. Preventive vaccination against tuberculosis with BCG and the Lubeck casualties. JAMA. 1931;96(1):58–59.
  • Fox GJ, Orlova M, Schurr E. Tuberculosis in newborns: the lessons of the “Lübeck Disaster” (1929-1933). PLoS Pathog. 2016;12(1):e1005271. doi:10.1371/journal.ppat.1005271. eCollection 2016.
  • Dickinson JM, Mitchison DA. Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am Rev Respir Dis. 1981;123(4 Pt 1):367.
  • Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999;3(10s2):S231–S279.
  • Verbist L, Gyselen A. Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis. 1968;98(6):923.
  • Peloquin C. What is the right dose of rifampin? Int J Tuberc Lung Dis. 2003;7:3–5.
  • Mitnick CD, McGee B, Peloquin CA. Tuberculosis pharmacotherapy: strategies to optimize patient care. Expert Opin Pharmacother. 2009;10:381–401.
  • Steingart KR, Jotblad S, Robsky K, et al. Higher-dose rifampin for the treatment of pulmonary tuberculosis: a systematic review [Review article]. Int J Tuberc Lung Dis. 2011;15(3):305–316.
  • Boeree MJ, Plemper Van Balen G, Aarnoutse RA. High-dose rifampicin: how do we proceed? [Correspondence]. Int J Tuberc Lung Dis. 2011 Aug;15(8):1133.
  • Van Ingen J, Aarnoutse RE, Donald PR, et al. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin Infect Dis. 2011;52(9):e194–e199.
  • Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015 May 1;191(9):1058–1065.
  • Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003 Jul;47(7):2118–2124.
  • Rosenthal IM, Tasneen R, Peloquin CA, et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother. 2012 Aug;56(8):4331–4340.
  • Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–341.
  • Egelund EF, Weiner M, Singh RP, et al. Protein binding of rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014 Aug;58(8):4904–4910.
  • Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365:2155–2166.
  • Priftin prescribing information, revised 12/2014. [ cited 2016 Feb 20]. Available from: http://products.sanofi.us/priftin/priftin.pdf
  • Dorman SE, Savic RM, Goldberg S, et al. Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial. Am J Respir Crit Care Med. 2015 Feb 1;191(3):333–343.
  • Davies GR, Cerri S, Richeldi L. Rifabutin for treating pulmonary tuberculosis. Cochrane Database Syst Rev. 2007;4:CD005159. doi:10.1002/14651858.CD005159.pub2.
  • Yoshida S, Suzuki K, Iwamoto T, et al. Comparison of rifabutin susceptibility and rpoB mutations in multi-drug-resistant Mycobacterium tuberculosis strains by DNA sequencing and the line probe assay. J Infect Chemother. 2010 Oct;16(5):360–363.
  • Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014 Jun;74(8):839–854.
  • Skinner MH, Blaschke TF. Clinical pharmacokinetics of rifabutin. Clin Pharmacokinet. 1995;28(2):115–125.
  • Sirturo (Bedaquiline) prescribing information [Internet]. [cited 2016 Apr 3]. Available from: https://www.sirturo.com/sites/default/files/pdf/sirturo-pi.pdf
  • Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–2981.
  • Svensson EM, Aweeka F, Park J-G, et al. Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother. 2013 Jun;57(6):2780–2787.
  • Svensson EM, Murray S, Karlsson MO, et al. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother. 2015 Apr;70(4):1106–1114.
  • Pym AS, Diacon AH, Tang S-J, et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J. 2016;47:564–574.
  • Guglielmetti L, Le Dû D, Jachym M, et al. Compassionate use of bedaquiline for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort. Clin Infect Dis. 2015;60:188–194.
  • Ndjeka N, Conradie F, Schnippel K, et al. Treatment of drug-resistant tuberculosis with bedaquiline in a high HIV prevalence setting: an interim cohort analysis. Int J Tuberc Lung Dis. 2015;19:979–985.
  • Shi R, Sugawara I. Development of new anti-tuberculosis drug candidates. Tohoku J Exp Med. 2010;221(2):97–106.
  • Ashtekar DR, Costa-Perira R, Nagrajan K, et al. In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 1993;37(2):183–186.
  • Stover CK, Warrener P, VanDevanter DR, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962–966.
  • Nuermberger EL, Spigelman MK, Yew WW. Current development and future prospects in chemotherapy of tuberculosis. Respirology. 2010;15(5):764–778.
  • Singh R, Manjunatha U, Boshoff HIM, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science. 2008;322(5906):1392.
  • Maroz A, Shinde SS, Franzblau SG, et al. Release of nitrite from the antitubercular nitroimidazole drug PA-824 and analogues upon one-electron reduction in protic, non-aqueous solvent. Org. Biomol. Chem. 2010;8(2):413–418.
  • Lenaerts AJ, Gruppo V, Marietta KS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrobial Agents and Chemotherapy. 2005;49(6):2294.
  • Tyagi S, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrobial Agents and Chemotherapy. 2005;49(6):2289.
  • Nuermberger E, Rosenthal I, Tyagi S, et al. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrobial Agents and Chemotherapy. 2006;50(8):2621–2625.
  • Nuermberger E, Tyagi S, Tasneen R, et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrobial Agents and Chemotherapy. 2008;52(4):1522–1524. doi:10.1128/AAC.00074-08. Epub 2008 Feb 19.
  • Phase 1 clinical trial of TB drug candidate TBA-354 discontinued [Internet]. [ cited 2016 Apr 4]. Available from: http://www.tballiance.org
  • Upton AM, Cho S, Yang TJ, et al. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015 Jan;59(1):136–144.
  • Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother. 2010;54:3402–3407.
  • Diacon AH, Dawson R, Du Bois J, et al. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother. 2012;56:3027–3031.
  • Diacon AH, Dawson R, Von Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med. 2015 Apr 15;191(8):943–953.
  • Dawson R, Diacon AH, Everitt D, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet. 2015 May 2;385(9979):1738–1747.
  • Hu Y, Coates ARM, Mitchison DA. Comparison of the sterilising activities of the nitroimidazopyran PA-824 and moxifloxacin against persisting Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2008;12(1):69–73.
  • Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro- imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. Plos Med. 2006;3(11):e466.
  • Yew WW, Lange C, Leung CC. Treatment of tuberculosis: update 2010. Eur Respir J. 2011;37(2):441–462.
  • European Medicines Agency. Delamanid (Deltyba): summary of product characteristics. [ cited 2014 Feb 21]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002552/WC500166232.pdf
  • Rustomjee R, Zumla A. Delamanid expanded access novel treatment of drug resistant tuberculosis. Infect Drug Resist. 2015 Oct;29(8):359–366.
  • Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for multidrugresistant pulmonary tuberculosis. N Engl J Med. 2012;366:2151–2160.
  • Skripconoka V, Danilovits M, Pehme L, et al. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J. 2013;41:1393–1400.
  • Sacksteder KA, Protopopova M, Barry CE, et al. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 2012 Jul;7(7):823–837.
  • Heinrich N, Dawson R, Du Bois J, et al. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients. J Antimicrob Chemother. 2015 May;70(5):1558–1566.
  • Boeree MJ, Hoelscher M. High-dose rifampin, SQ109 and moxifloxacin for treating TB: the PanACEA MAMS-TB trial [Internet]. CROI abstract. [cited 2016 Feb 14]. Available from: http://www.croiconference.org/sessions/high-dose-rifampin-sq109-and-moxifloxacin-treating-tb-panacea-mams-tb-trial
  • Veiga-Santos P, Li K, Lameira L, et al. SQ109, a new drug lead for Chagas disease. Antimicrob Agents Chemother. 2015 Apr;59(4):1950–1961.
  • Dietze R, Hadad DJ, McGee B, et al. Early and extended early bactericidal activity of linezolid in pulmonary tuberculosis. Am J Respir Crit Care Med. 2008 Dec 1;178(11):1180–1185.
  • PubMed search. [ cited 2016 Feb 29]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/?term=linezolid+and+tuberculosis
  • Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. 2012 Oct 18;367(16):1508–1518.
  • Lee M, Cho SN, Barry CE, et al. Linezolid for XDR-TB–final study outcomes. N Engl J Med. 2015 Jul 16;373(3):290–291.
  • Brown AN, Drusano GL, Adams JR, et al. Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy. MBio. 2015 Nov 3;6(6):e01741–15.
  • Song T, Lee M, Jeon H-S, et al. Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis. EBioMedicine. 2015 Oct 9;2(11):1627–1633.
  • Drusano G. Sutezolid (SUT), linezolid (LZD), and rifampin (RIF) A-1562 - ICAAC. 53rd Interscience conference on antimicrobial agents and chemotherapy; 2013 Sep 10–13; Denver (CO). 2013.
  • Wallis RS, Dawson R, Friedrich SO, et al. Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One. 2014;9:e94462.
  • 3 studies found for sutezolid: NCT00990990, NCT00871949, and NCT01225640 [Internet]. [ cited 2016 Feb 29]. Available from: https://clinicaltrials.gov/ct2/results?term=sutezolid&Search=Search
  • Vera-Cabrera L, Gonzalez E, Rendon A, et al. In vitro activities of DA-7157 and DA-7218 against Mycobacterium tuberculosis and Nocardia brasiliensis. Antimicrob Agents Chemother. 2006;50(9):3170–3172.
  • Molina-Torres CA, Barba-Marines A, Valles-Guerra O, et al. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages. Ann Clin Microbiol Antimicrob. 2014;13(1):13.
  • Tedizolid clinical trials. [ cited 2016 Mar 5]. Available from: https://clinicaltrials.gov/ct2/results?term=tedizolid&Search=Search
  • Tedizolid prescribing information. [ cited 2016 Mar 5]. Available from: http://www.merck.com/product/usa/pi_circulars/s/sivextro/sivextro_pi.pdf
  • Balasubramanian V, Solapure S, Iyer H, et al. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob Agents Chemother. 2014;58(1):495–502.
  • Balasubramanian V, Solapure S, Shandil R, et al. Pharmacokinetic and pharmacodynamic evaluation of AZD5847 in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2014 Jul;58(7):4185–4190.
  • Phase 2a EBA trial of AZD584. [ cited 2016 Mar 5]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01516203?term=AZD5847&rank=2
  • Jawahar MS, Banurekha VV, Paramasivan CN, et al. Randomized clinical trial of thrice – weekly 4 - month moxifloxacin or gatifloxacin. PLoS One. 2013;8(7):e67030.
  • Gillespie SH, Crook AM, McHugh TD, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371(17):1577–1587.
  • Merle CS, Fielding K, Sow OB, et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med. 2014;371(17):1588–1598.
  • Lanoix J-P, Chaisson RE, Nuermberger EL. Shortening tuberculosis treatment with fluoroquinolones: lost in translation? Clin Infect Dis. 2016 Feb 15;62(4):484–490.
  • Lechartier B, Cole ST. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015 Aug;59(8):4457–4463.
  • Pule CM, Sampson SL, Warren RM, et al. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother. 2016 Jan;71(1):17–26.
  • The shorter MDR_TB Regime [Internet]. [ cited 2016 Jun 15]. Available from: http://www.who.int/tb/Short_MDR_regimen_factsheet.pdf
  • Swanson RV, Ammerman NC, Ngcobo B, et al. Clofazimine contributes sustained antimicrobial activity after treatment cessation in a mouse model of tuberculosis chemotherapy. Antimicrob Agents Chemother. 2016 Apr 22;60(5):2864–2869.
  • Duncan K. A new era in tuberculosis treatment: what does the future hold? In: Donald PR, Van Helden PD, editors. Antituberculosis chemotherapy. Prog Respir Res. Vol. 40. Basel: Karger; 2011. p. 243–246.
  • Global phase 3 'STAND' trial launched to test new tuberculosis drug regimen PaMZ to shorten, improve treatment [Internet]. [ cited 2016 Mar 17]. Available from: http://www.tballiance.org/news/global-phase-3-stand-trial-launched-test-new-tuberculosis-drug-regimen-pamz-shorten-improve
  • Payne DJ, Gwynn MN, Holmes DJ, et al. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6:29–40.
  • Moreira W, Ngan GJY, Low JL, et al. Target mechanism-based whole-cell screening identifies bortezomib as an inhibitor of caseinolytic protease in mycobacteria. MBio. 2015;6(3):e00253–15. doi:10.1128/mBio.00253-15.
  • Garfein RS, Collins K, Muñoz F, et al. Feasibility of tuberculosis treatment monitoring by video directly observed therapy: a binational pilot study. Int J Tuberc Lung Dis. 2015 Sep;19(9):1057–1064.
  • Mirsaeidi M, Farshidpour M, Banks-Tripp D, et al. Video directly observed therapy for treatment of tuberculosis is patient-oriented and cost-effective. Eur Respir J Sep. 2015;46(3):871–874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.