1,526
Views
92
CrossRef citations to date
0
Altmetric
Review

Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species

&
Pages 971-977 | Received 05 Feb 2018, Accepted 10 May 2018, Published online: 22 Jun 2018

References

  • Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2016;214: 15–21.
  • Denning D, Kneale M, Rautemaa-Richardson R, et al. Global burden of recurrent vulvovaginal candidiasis: a systemic review. Lancet Infect Dis. 2018. (In Press).
  • Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369:1961–1971.
  • Sobel JD. Recurrent vulvovaginal candidiasis. A prospective study of the efficacy of maintenance ketoconazole therapy. N Engl J Med. 1986 Dec 4;315(23):1455–1458.
  • Sobel JD, Wiesenfeld HC, Martens M, et al. Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N Engl J Med. 2004 Aug 26;351(9):876–883.
  • Donders G, Bellen G, Byttebier G, et al. Individualized decreasing-dose maintenance fluconazole regimen for recurrent vulvovaginal candidiasis (ReCiDiF trial). Am J Obstet Gynecol. 2008 Dec;199(6):613.e1–9.
  • Kalaiarasan K, Singh R, Chaturvedula L. Fungal profile of vulvovaginal candidiasis in a tertiary care hospital. J Clin Diagn Res. 2017 Mar;11(3):DC06–DC09.
  • Marchaim D, Lemanek L, Bheemreddy S, et al. Fluconazole-resistant Candida albicans vulvovaginitis. Obstet Gynecol. 2012;120(6):1407–1414.
  • Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of Candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016 Feb 15;62(4):e1-50.
  • Rex JH, Rinaldi MG, Pfaller MA. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995 Jan;39(1):1–8.
  • Maenza JR, Merz WG, Romagnoli MJ, et al. Infection due to fluconazole-resistant Candida in patients with AIDS: prevalence and microbiology. Clin Infect Dis. 1997 Jan;24(1):28–34.
  • Martins MD, Lozano-Chiu M, Rex JH. Point prevalence of oropharyngeal carriage of fluconazole-resistant Candida in human immunodeficiency virus-infected patients. Clin Infect Dis. 1997 Oct;25(4):843–846.
  • Fichtenbaum CJ, Koletar S, Yiannoutsos C, et al. Refractory mucosal candidiasis in advanced human immunodeficiency virus infection. Clin Infect Dis. 2000 May;30(5):749–756.
  • Mushi MF, Mtemisika CI, Bader O, et al. High rate carriage of non-albicans Candida spp. among HIV-infected individuals. Int J Infect Dis. 2016;49:185–188.
  • Patel PK, Erlandsen JE, Kirkpatrick WR, et al. The changing epidemiology of oropharyngeal Candidiasis in patients with HIV/AIDS in the Era of antiretroviral therapy. AIDS Res Treat. 2012;2012:262471.
  • Clark-Ordóñez I, Callejas-Negrete OA, Aréchiga-Carvajal ET, et al. Candida species diversity and antifungal susceptibility patterns in oral samples of HIV/AIDS patients in Baja California, Mexico. Med Mycol. 2017 Apr 1;55(3):285–294.
  • Nakamura-Vasconcelos SS, Fiorini A, Zanni PD, et al. Emergence of Candida glabrata in vulvovaginal candidiasis should be attributed to selective pressure or virulence ability?. Arch Gynecol Obstet. 2017;296:519–526.
  • Choukri F, Benderdouche M, Sednaoui P. In vitro susceptibility profile of 200 recent clinical isolates of Candida spp. to topical antifungal treatments of vulvovaginal candidiasis, the imidazoles and nystatin agents. J Mycol Med. 2014;24:303–307.
  • Sobel JD, Vazquez JA. Symptomatic vulvovaginitis due to fluconazole-resistant Candida albicans in a female who was not infected with human immunodeficiency virus. Clin Infect Dis. 1996 Apr;22(4):726–727.
  • Khosravi Rad K, Falahati M, Roudbary M, et al. Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis. Curr Med Mycol. 2016;2:24–29.
  • Park S, Perlin DS. Establishing surrogate markers for fluconazole resistance in Candida albicans. Microb Drug Resist. Fall 2005;11(3):232–238.
  • Marichal P, Vanden Bossche H. Mechanisms of resistance to azole antifungals. Acta Biochim Pol. 1995;42(4):509–516.
  • Morschhäuser J. The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta. 2002 Jul 18;1587(2–3):240–248.
  • Morschhäuser J. The development of fluconazole resistance in Candida albicans - an example of microevolution of a fungal pathogen. J Microbiol. 2016;54(3): 192–201.
  • Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 2017 Aug 15;216(suppl_3):S445–S451.
  • Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med (Lausanne). 2016 Mar;15(3):11.
  • Löffler J, Kelly SL, Hebart H, et al. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett. 1997 Jun 15;151(2):263–268.
  • Zhang JY, Liu JH, Liu FD, et al. Vulvovaginal candidiasis: species distribution, fluconazole resistance and drug efflux pump gene overexpression. Mycoses. 2014;57:584–591.
  • Bhattacharya S, Sobel JD, White TC. A combination fluorescence assay demonstrates increased efflux pump activity as a resistance mechanism in azole-resistant vaginal Candida albicans isolates. Antimicrob Agents Chemother. 2016.
  • Gulat S, Doluca Dereli M. Investigation of the expression levels of efflux pumps in fluconazole-resistant Candida albicans isolates. Mikrobiyol Bul. 2014 Apr;48(2):325–334.
  • Sanglard D, Ischer F, Monod M, et al. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997 Feb;143(Pt 2):405–416.
  • Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology . 2000 Nov;146(Pt 11):2743–2754.
  • White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997 Jul;41(7):1482–1487.
  • Chau AS, Mendrick CA, Sabatelli FJ, et al. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother. 2004 Jun;48(6):2124–2131.
  • Karababa M, Coste AT, Rognon B, et al. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother. 2004 Aug;48(8):3064–3079.
  • Manoharlal R, Gaur NA, Panwar SL, et al. Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans. Antimicrob Agents Chemother. 2008 Apr;52(4):1481–1492.
  • Schuetzer-Muehlbauer M, Willinger B, Egner R, et al. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents. 2003 Sep;22(3):291–300.
  • Dunkel N, Blass J, Rogers PD, et al. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol. 2008 Aug;69(4):827–840.
  • Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother. 2003 Apr;47(4):1220–1227.
  • Healey KR, Zhao Y, Perez WB, et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 2016;7:11128.
  • Kennedy MA, Sobel JD. Vulvovaginal Candidiasis caused by non-albicans candida species: new insights. Curr Infect Dis Rep. 2010 Nov;12(6):465–470.
  • Sobel JD, Chaim W, Nagappan V, et al. Treatment of vaginitis caused by Candida glabrata: use of topical boric acid and flucytosine. Am J Obstet Gynecol. 2003 Nov;189(5):1297–1300.
  • Iavazzo C, Gkegkes ID, Zarkada IM, et al. Boric acid for recurrent vulvovaginal candidiasis: the clinical evidence. J Womens Health (Larchmt). 2011;20:1245–1255.
  • De Seta F, Schmidt M, Vu B, et al. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrob Chemother. 2009 Feb;63(2):325–336.
  • White DJ, Habib AR, Vanthuyne A, et al. Combined topical flucytosine and amphotericin B for refractory vaginal Candida glabrata infections. Sex Transm Infect. 2001 Jun;77(3):212–213.
  • White DJ, Johnson EM, Warnock DW. Management of persistent vulvo vaginal candidosis due to azole-resistant Candida glabrata. Genitourin Med. 1993 Apr;69(2):112–114.
  • Singh S, Sobel JD, Bhargava P, et al. Vaginitis due to Candida krusei: epidemiology, clinical aspects, and therapy. Clin Infect Dis. 2002 Nov 1;35(9):1066–1070.
  • Hargrove TY, Friggeri L, Wawrzak Z, et al. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem. 2017 Apr 21;292(16):6728–6743.
  • Schell WA, Jones AM, Garvey EP, et al. Fungal CYP51 Inhibitors VT-1161 and VT-1129 exhibit strong in vitro activity against Candida glabrata and C. krusei isolates clinically resistant to Azole and echinocandin antifungal compounds. Antimicrob Agents Chemother. 2017 Feb 23;61(3).
  • Break TJ, Desai JV, Natarajan M, et al. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans. J Antimicrob Chemother. 2018 Jan 1;73(1):151–155.
  • Garvey EP, Hoekstra WJ, Schotzinger RJ, et al. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis. Antimicrob Agents Chemother. 2015 Sep;59(9):5567–5573.
  • Jiménez-Ortigosa C, Paderu P, Motyl MR, et al. Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida Species and Aspergillus species isolates. Antimicrob Agents Chemother. 2014;58(2):1248–1251.
  • Lepak AJ, Marchillo K, Andes DR. Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078 (MK-3118), using an in vivo murine invasive candidiasis model. Antimicrob Agents Chemother. 2015 Feb;59(2):1265–1272.
  • McCarthy MW, Kontoyiannis DP, Cornely OA, et al. Novel agents and drug targets to meet the challenges of resistant fungi. J Infect Dis. 2017 Aug 15;216(suppl_3):S474–S483.
  • Edwards JE Jr, Schwartz MM, Schmidt CS, et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis-A phase 2 randomized,double-blind, placebo-controlled trial. Clin Infect Dis. 2018 Jun 1;66(12):1928–1936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.