415
Views
1
CrossRef citations to date
0
Altmetric
Review

The dawn of precision medicine in HIV: state of the art of pharmacotherapy

, , , &
Pages 1581-1595 | Received 02 Jul 2018, Accepted 22 Aug 2018, Published online: 20 Sep 2018

References

  • WHO, United Nations report on the global AIDS epidemic 2013. http://files.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf. 2015.
  • CDC, HIV/AIDs statistics and surveillance CDC Available from: https://www.cdc.gov/hiv/statistics/overview/ataglance.html. 2015. Accessed on 25 Jun 2018
  • NIH, Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available from http://aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. Accessed on 25 Jun 2018
  • NIH, NCI and the precision medicine initiative. Available from: https://www.cancer.gov/research/areas/treatment/pmi-oncology. Accessed on 25 Jun 2018
  • Yuen GJ, Morris DM, Mydlow PK, et al. Pharmacokinetics, absolute bioavailability, and absorption characteristics of lamivudine. J Clin Pharmacol. 1995;35(12):1174–1180.
  • Minuesa G, Huber-Ruano I, Pastor-Anglada M, et al. Drug uptake transporters in antiretroviral therapy. Pharmacol Ther. 2011;132(3):268–279.
  • FDA, Antiretroviral drugs used in the treatment of HIV infection. Available from: https://www.fda.gov/forpatients/illness/hivaids/treatment/ucm118915.htm. 2018. Accessed on 25 Jun 2018
  • Anderson PL, Lamba J, Aquilante CL, et al. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006;42(4):441–449.
  • Yuen GJ, Weller S, Pakes GE. A review of the pharmacokinetics of abacavir. Clin Pharmacokinet. 2008;47(6):351–371.
  • Moyle G, Boffito M, Fletcher C, et al. Steady-state pharmacokinetics of abacavir in plasma and intracellular carbovir triphosphate following administration of abacavir at 600 milligrams once daily and 300 milligrams twice daily in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother. 2009;53(4):1532–1538.
  • Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–732.
  • Norcross MA, Luo S, Lu L, et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. Aids. 2012;26(11):F21–9.
  • Mallal S, Phillips E, Carosi G, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–579.
  • Hughes DA, Vilar FJ, Ward CC, et al. Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics. 2004;14(6):335–342.
  • Small CB, Margolis DA, Shaefer MS, et al. HLA-B*57:01 allele prevalence in HIV-infected North American subjects and the impact of allele testing on the incidence of abacavir-associated hypersensitivity reaction in HLA-B*57:01-negative subjects. BMC Infect Dis. 2017;17(1):256.
  • Wang H, Lu X, Yang X, et al. The efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate in antiretroviral regimens for HIV-1 therapy: meta-analysis. Medicine (Baltimore). 2016;95(41):e5146.
  • Kiser JJ, Carten ML, Aquilante CL, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther. 2008;83(2):265–272.
  • Likanonsakul S, Suntisuklappon B, Nitiyanontakij R, et al. A single-nucleotide polymorphism in ABCC4 Is associated with tenofovir-related beta2-microglobulinuria in Thai patients with HIV-1 infection. PLoS One. 2016;11(1):e0147724.
  • Pushpakom SP, Liptrott NJ, Rodriguez-Novoa S, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–153.
  • Kiser JJ, Aquilante CL, Anderson PL, et al. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47(3):298–303.
  • EMTRIVA®. (emtricitabine): highlights of prescribing information. 2008; Available from: http://wwwgileadcom/pdf/emtriva_pipdf. Accessed on 25 Jun 2018
  • Back DJ, Burger DM, Flexner CW, et al. The pharmacology of antiretroviral nucleoside and nucleotide reverse transcriptase inhibitors: implications for once-daily dosing. J Acquir Immune Defic Syndr.2005;39(Suppl 1):S1–23. quiz S24-25.
  • Piliero PJ. Pharmacokinetic properties of nucleoside/nucleotide reverse transcriptase inhibitors. J Acquir Immune Defic Syndr. 2004;37(Suppl 1):S2–S12.
  • Kasim NA, Whitehouse M, Ramachandran C, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1(1):85–96.
  • SUSTIVA. Sustiva prescribing information. Available from: http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=10348#section-4.1. Accessed on 25 Jun 2018
  • Stahle L, Moberg L, Svensson JO, et al. Efavirenz plasma concentrations in HIV-infected patients: inter- and intraindividual variability and clinical effects. Ther Drug Monit. 2004;26(3):267–270.
  • Ghosn J, Chaix ML, Delaugerre C. HIV-1 resistance to first- and second-generation non-nucleoside reverse transcriptase inhibitors. AIDS Rev. 2009;11(3):165–173.
  • Miksys S, Tyndale RF. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab Rev. 2004;36(2):313–333.
  • Kwara A, Lartey M, Sagoe KW, et al. CYP2B6 (c.516G–>T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients. Br J Clin Pharmacol. 2009;67(4):427–436.
  • Gatanaga H, Hayashida T, Tsuchiya K, et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis. 2007;45(9):1230–1237.
  • Lam TN, Hui KH, Chan DP, et al. Genotype-guided dose adjustment for the use of efavirenz in HIV treatment. J Infect. 2015;71(5):607–609.
  • Bienczak A, Cook A, Wiesner L, et al. The impact of genetic polymorphisms on the pharmacokinetics of efavirenz in African children. Br J Clin Pharmacol. 2016;82(1):185–198.
  • Atwine D, Bonnet M, Taburet AM. Pharmacokinetics of efavirenz in patients on antituberculosis treatment in high human immunodeficiency virus and tuberculosis burden countries: a systematic review. Br J Clin Pharmacol. 2018;84(8):1641–1658.
  • Sharma M, Saravolatz LD. Rilpivirine: a new non-nucleoside reverse transcriptase inhibitor. J Antimicrob Chemother. 2013;68(2):250–256.
  • Usach I, Melis V, Peris JE. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability. J Int AIDS Soc. 2013;16:1–14.
  • Azijn H, Tirry I, Vingerhoets J, et al. TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother. 2010;54(2):718–727.
  • Aouri M, Barcelo C, Guidi M, et al. Population pharmacokinetics and pharmacogenetics analysis of rilpivirine in HIV-1-infected individuals. Antimicrob Agents Chemother. 2017;61(1).
  • Behm MO, Yee KL, Liu R, et al. The effect of food on doravirine bioavailability: results from two pharmacokinetic studies in healthy subjects. Clin Drug Investig. 2017;37(6):571–579.
  • Smith SJ, Pauly GT, Akram A, et al. Rilpivirine and doravirine have complementary efficacies against NNRTI-resistant HIV-1 mutants. J Acquir Immune Defic Syndr. 2016;72(5):485–491.
  • Meizhen Feng MS, Min X, Grobler J, et al., NNRTI-resistant mutants are suppressed by doravirine at clinically.Poster presented at: Conference on Retroviruses and Opportunistic Infections (CROI); Feb 22-25, 2016; Boston, MA. Poster 506. http://www.croiconference.org/sites/default/files/posters-2016/506.pdf
  • Merck Sharp & Dohme Corp. A phase 3 multicenter, double-blind, randomized, active comparator-controlled clinical trial to evaluate the safety and efficacy of doravirine (MK-1439) 100 mg once daily versus darunavir 800 mg once daily plus ritonavir 100 mg once daily, each in combination with TRUVADA™ or EPZICOM™/KIVEXA™, in treatment-naive HIV-1 infected subjects. In:ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US); Updated 2014 Oct 23;cited 2014 Oct 23;cited 2017 Oct 23;cited 2017 Aug 23;cited 2017 Aug 28. Available from. https://www.clinicaltrials.gov/ct2/show/NCT02275780.
  • Squires K. Doravirine is non-inferior to darunavir/r in Phase 3 treatment-naïve trial at Week 48. Webcast presented at: Conference on Retroviruses and Opportunistic Infections (CROI); Feb 13-16, 2017; Seattle, Washington. Available from: http://www.croiwebcasts.org/console/player/33382?mediaType=slideVideo&. Last accessed on August 28, 2017.
  • Jean-Michel Molina KS, Sax PE, Doravirine is non-inferior to darunavir/r in Phase 3 treatment-naive trial at Week 48. Abstract presented at: Conference on Retroviruses and Opportunistic Infections (CROI); Feb 13-16, 2017; Seattle, Washington. Available from: http://www.croiconference.org/sessions/doravirine-non-inferior-darunavirr-phase-3-treatment-na%C3%AFve-trial-week-48. Last accessed on August 28, 2017.
  • Merck Sharp & Dohme Corp. A phase II A phase III multicenter, double-blind, randomized, active comparator-controlled clinical trial to evaluate the safety and efficacy of MK-1439A once-daily versus ATRIPLA™ once-daily in treatment-naïve HIV-1 infected subjects. In:ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US); updated 2015 Mar 26; cited 2015 Mar 26; cited 2017 Mar 26; cited 2017 Aug 26; cited 2017 Aug 28. Available from. https://www.clinicaltrials.gov/ct2/show/NCT02403674.
  • Squires KE, Molina J-M, Sax PE, et al., Fixed-dose combination of doravirine/lamivudine/TDF is non-inferior to efavirenz/emtricitabine/TDF in treatment-naive adults with HIV-1 infection: week 48 results of the phase 3 DRIVE-AHEAD study. Slides presented at: International AIDS Society (IAS) Conference on HIV Science; Jul 23-26, 2017; Paris, France. Available from: http://programme.ias2017.org/PAGMaterial/PPT/2906_4292/IAS%20oral%20presentation__1439A-021%20Primary%20Results_Final_25July2017_Squires.pptx. Last accessed on August 28, 2017.
  • Markowitz M, Morales-Ramirez JO, Nguyen BY, et al. Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naive HIV-1-infected individuals. J Acquir Immune Defic Syndr. 2006;43(5):509–515.
  • Cahn P, Kaplan R, Sax PE, et al. Raltegravir 1200 mg once daily versus raltegravir 400 mg twice daily, with tenofovir disoproxil fumarate and emtricitabine, for previously untreated HIV-1 infection: a randomised, double-blind, parallel-group, phase 3, non-inferiority trial. Lancet HIV. 2017;4(11):E486–E494.
  • Arab-Alameddine M, Fayet-Mello A, Lubomirov R, et al. Population pharmacokinetic analysis and pharmacogenetics of raltegravir in HIV-positive and healthy individuals. Antimicrob Agents Chemother. 2012;56(6):2959–2966.
  • Siccardi M, D’Avolio A, Rodriguez-Novoa S, et al. Intrapatient and interpatient pharmacokinetic variability of raltegravir in the clinical setting. Ther Drug Monit. 2012;34(2):232–235.
  • Calcagno A, Cusato J, Simiele M, et al. High interpatient variability of raltegravir CSF concentrations in HIV-positive patients: a pharmacogenetic analysis. J Antimicrob Chemother. 2014;69(1):241–245.
  • Cahn P. Candidates for inclusion in a universal antiretroviral regimen: dolutegravir. Curr Opin HIV AIDS. 2017;12(4):318–323.
  • Chen S, St Jean P, Borland J, et al. Evaluation of the effect of UGT1A1 polymorphisms on dolutegravir pharmacokinetics. Pharmacogenomics. 2014;15(1):9–16.
  • Tsuchiya K, Hayashida T, Hamada A, et al. Brief report: high peak level of plasma raltegravir concentration in patients with ABCB1 and ABCG2 genetic variants. J Acquir Immune Defic Syndr. 2016;72(1):11–14.
  • Podany AT, Scarsi KK, Fletcher CV. Comparative clinical pharmacokinetics and pharmacodynamics of HIV-1 integrase strand transfer inhibitors. Clin Pharmacokinet. 2017;56(1):25–40.
  • Calcagno A, Simiele M, Motta I, et al. Elvitegravir/cobicistat/tenofovir/emtricitabine penetration in the cerebrospinal fluid of three HIV-positive patients. AIDS Res Hum Retroviruses. 2016;32(5):409–411.
  • Barcelo C, Gaspar F, Aouri M, et al. Population pharmacokinetic analysis of elvitegravir and cobicistat in HIV-1-infected individuals. J Antimicrob Chemother. 2016;71(7):1933–1942.
  • Brik A, Wong CH. HIV-1 protease: mechanism and drug discovery. Org Biomol Chem. 2003;1(1):5–14.
  • van Leth F, Phanuphak P, Ruxrungtham K, et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: a randomised open-label trial, the 2NN Study. Lancet. 2004;363(9417):1253–1263.
  • Best BM, Letendre SL, Brigid E, et al. Low atazanavir concentrations in cerebrospinal fluid. AIDS. 2009;23(1):83–87.
  • Cleijsen RM, van de Ende ME, Kroon FP, et al. Therapeutic drug monitoring of the HIV protease inhibitor atazanavir in clinical practice. J Antimicrob Chemother. 2007;60(4):897–900.
  • Le Tiec C, Barrail A, Goujard C, et al. Clinical pharmacokinetics and summary of efficacy and tolerability of atazanavir. Clin Pharmacokinet. 2005;44(10):1035–1050.
  • Johnson DH, Venuto C, Ritchie MD, et al. Genomewide association study of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202. Pharmacogenet Genomics. 2014;24(4):195–203.
  • Gammal RS, Court MH, Haidar CE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for UGT1A1 and atazanavir prescribing. Clin Pharmacol Ther. 2016;99(4):363–369.
  • Kile DA, MaWhinney S, Aquilante CL, et al. A population pharmacokinetic-pharmacogenetic analysis of atazanavir. AIDS Res Hum Retroviruses. 2012;28(10):1227–1234.
  • Anderson PL, Aquilante CL, Gardner EM, et al. Atazanavir pharmacokinetics in genetically determined CYP3A5 expressors versus non-expressors. J Antimicrob Chemother. 2009;64(5):1071–1079.
  • Tie Y, Wang YF, Boross PI, et al. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors. Protein Sci. 2012;21(3):339–350.
  • Tie Y, Boross PI, Wang YF, et al. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J Mol Biol. 2004;338(2):341–352.
  • Molto J, Xinarianos G, Miranda C, et al. Simultaneous pharmacogenetics-based population pharmacokinetic analysis of darunavir and ritonavir in HIV-infected patients. Clin Pharmacokinet. 2013;52(7):543–553.
  • Belkhir L, Elens L, Zech F, et al. Interaction between darunavir and etravirine is partly mediated by CYP3A5 polymorphism. PLoS One. 2016;11(10):e0165631.
  • Moyle GJ, Back D. Principles and practice of HIV-protease inhibitor pharmacoenhancement. HIV Med. 2001;2(2):105–113.
  • Elens L, van Gelder T, Hesselink DA, et al. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013;14(1):47–62.
  • Carter J, Keating. GM. ARAVIROC. Drugs. 2007;67(15):2277–2288. Discussion 2289-2290.
  • Siccardi M, D’Avolio A, Nozza S, et al. Maraviroc is a substrate for OATP1B1 in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenet Genomics. 2010;20(12):759–765.
  • Lu Y, Fuchs EJ, Hendrix CW, et al. CYP3A5 genotype impacts maraviroc concentrations in healthy volunteers. Drug Metab Dispos. 2014;42(11):1796–1802.
  • Lu Y, Fuchs EJ, Hendrix CW, et al. Response to “clinical relevance of CYP3A5 genotype on maraviroc exposures”. Drug Metab Dispos. 2015;43(5):773.
  • Stellbrink HJ, Reynes J, Lazzarin A, et al. Dolutegravir in antiretroviral-naive adults with HIV-1: 96-week results from a randomized dose-ranging study. AIDS. 2013;27(11):1771–1778.
  • de Saint-Martin L, Bressollette L, Perfezou P, et al. Impact of atazanavir-based HAART regimen on the carotid intima-media thickness of HIV-infected persons: a comparative prospective cohort. AIDS. 2010;24(18):2797–2801.
  • Lennox JL, Landovitz RJ, Ribaudo HJ, et al. Efficacy and tolerability of 3 nonnucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens for treatment-naive volunteers infected with HIV-1: a randomized, controlled equivalence trial. Ann Intern Med. 2014;161(7):461–471.
  • Molina JM, Clotet B, van Lunzen J, et al. Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV. 2015;2(4):e127–36.
  • Squires K, Kityo C, Hodder S, et al. Integrase inhibitor versus protease inhibitor based regimen for HIV-1 infected women (WAVES): a randomised, controlled, double-blind, phase 3 study. Lancet HIV. 2016;3(9):e410–e420.
  • NIH, Guidelines for the use of antiretroviral agents in adults and adolescents living with HIV Available from: https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv/11/what-to-start. Accessed on 25 Jun 2018
  • Saravanan S, Kausalya B, Gomathi S, et al. Etravirine and rilpivirine drug resistance among HIV-1 subtype C infected children failing non-nucleoside reverse transcriptase inhibitor-based regimens in South India. AIDS Res Hum Retroviruses. 2017;33(6):567–574.
  • Gallant J, Hsue PY, Shreay S, et al. Comorbidities among US patients with prevalent HIV infection – a trend analysis. J Infect Dis. 2017;216(12):1525–1533.
  • Mayer KH, Loo S, Crawford PM, et al. Excess clinical comorbidity among HIV-infected patients accessing primary care in US community health centers. Public Health Rep. 2018;133(1):109–118.
  • Kelly SG, Plankey M, Post WS, et al. Associations between tobacco, alcohol, and drug use with coronary artery plaque among HIV-infected and uninfected men in the multicenter AIDS cohort study. PLoS One. 2016;11(1):e0147822.
  • Smith AM, Smouse SL, Tau NP, et al. Laboratory-acquired infections of Salmonella enterica serotype Typhi in South Africa: phenotypic and genotypic analysis of isolates. BMC Infect Dis. 2017;17(1):551.
  • Hamblin MA, Wordsworth S, Fermont JM, et al. Clinical applicability and cost of a 46-gene panel for genomic analysis of solid tumours: retrospective validation and prospective audit in the UK national health service. PLoS Med. 2017;14(2):e1002424.
  • Conrado T, Miranda-Filho Dde B, Bandeira F. Vitamin D deficiency in HIV-infected individuals: one more risk factor for bone loss and cardiovascular disease? Arq Bras Endocrinol Metabol. 2010;54(2):118–122.
  • Friis-Møller N, Thiébaut R, Reiss P, et al. Predicting the risk of cardiovascular disease in HIV-infected patients: the data collection on adverse effects of anti-HIV drugs study. Eur J Cardiovasc Prev Rehabil. 2010;17(5):491–501.
  • Ryom L, Lundgren JD, El-Sadr W, et al. Cardiovascular disease and use of contemporary protease inhibitors: the D:A:D international prospective multicohort study. The Lancet HIV. 2018;5(6):e291-e300. e291-e300.
  • LaFleur J, Bress AP, Rosenblatt L, et al. Cardiovascular outcomes among HIV-infected veterans receiving atazanavir. Aids. 2017;31(15):2095–2106.
  • Gatell JM, Assoumou L, Moyle G, et al. Switching from a ritonavir-boosted protease inhibitor to a dolutegravir-based regimen for maintenance of HIV viral suppression in patients with high cardiovascular risk. Aids. 2017;31(18):2503–2514.
  • Santos JR, Saumoy M, Curran A, et al. The lipid-lowering effect of tenofovir/emtricitabine: a randomized, crossover, double-blind, placebo-controlled trial. Clin Infect Dis. 2015;61(3):403–408.
  • Faltz M, Bergin H, Pilavachi E, et al. Effect of the anti-retroviral drugs efavirenz, tenofovir and emtricitabine on endothelial cell function: role of PARP. Cardiovasc Toxicol. 2017;17(4):393–404.
  • Maggi P, Bellacosa C, Carito V, et al. Cardiovascular risk factors in patients on long-term treatment with nevirapine- or efavirenz-based regimens. J Antimicrob Chemother. 2011;66(4):896–900.
  • Gupta SK, Shen C, Moe SM, et al. Worsening endothelial function with efavirenz compared to protease inhibitors: a 12-month prospective study. PLoS One. 2012;7(9):e45716.
  • Durand M, Sheehy O, Baril JG, et al. Association between HIV infection, antiretroviral therapy, and risk of acute myocardial infarction: a cohort and nested case-control study using Quebec’s public health insurance database. J Acquir Immune Defic Syndr. 2011;57(3):245–253.
  • Abdelhady AM, Shugg T, Thong N, et al. Efavirenz inhibits the human ether-a-go-go related current (hERG) and induces QT interval prolongation in CYP2B6*6*6 allele carriers. J Cardiovasc Electrophysiol. 2016;27(10):1206–1213.
  • Tibotec P, Edurant Prescribing Information https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202022s000lbl.pdf. 2011. Accessed on 25 Jun 2018
  • Natinal HIV curriculum Drug Interactions with Antiretroviral Medications. Available from https://www.hiv.uw.edu/go/antiretroviral-therapy/drug-drug-interactions/core-concept/all. Accessed on 25 Jun 2018
  • Ichai P, Samuel D. Epidemiology of liver failure. Clin Res Hepatol Gastroenterol. 2011;35(10):610–617.
  • Soriano V, Barreiro P, Sherman KE. The changing epidemiology of liver disease in HIV patients. AIDS Rev. 2013;15(1):25–31.
  • Prosperi MC, Rosen-Zvi M, Altmann A, et al. Antiretroviral therapy optimisation without genotype resistance testing: a perspective on treatment history based models. PLoS One. 2010;5(10):e13753.
  • Chan-Tack KM, Struble KA, Birnkrant DB. Intracranial hemorrhage and liver-associated deaths associated with tipranavir/ritonavir: review of cases from the FDA’s adverse event reporting system. AIDS Patient Care STDS. 2008;22(11):843–850.
  • Parvez MK. HBV and HIV co-infection: impact on liver pathobiology and therapeutic approaches. World J Hepatol. 2015;7(1):121–126.
  • Huhn GD, Tebas P, Gallant J, et al. A randomized, open-label trial to evaluate switching to elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide plus darunavir in treatment-experienced HIV-1-infected adults. J Acquir Immune Defic Syndr. 2017;74(2):193–200.
  • Soriano V, Vispo E, Labarga P, et al. Viral hepatitis and HIV co-infection. Antiviral Res. 2010;85(1):303–315.
  • Osinusi A, Townsend K, Kohli A, et al. Virologic response following combined ledipasvir and sofosbuvir administration in patients with HCV genotype 1 and HIV co-infection. JAMA. 2015;313(12):1232–1239.
  • Gupta SK, Mamlin BW, Johnson CS, et al. Prevalence of proteinuria and the development of chronic kidney disease in HIV-infected patients. Clin Nephrol. 2004;61(1):1–6.
  • Swanepoel CR, Atta MG, D’Agati VD, et al. Kidney disease in the setting of HIV infection: conclusions from a kidney disease: improving global outcomes (KDIGO) Controversies Conference. Kidney Int. 2018;93(3):545–559.
  • Rosenberg AZ, Naicker S, Winkler CA, et al. HIV-associated nephropathies: epidemiology, pathology, mechanisms and treatment. Nat Rev Nephrol. 2015;11(3):150–160.
  • Mocroft A, Kirk O, Reiss P, et al. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. AIDS. 2010;24(11):1667–1678.
  • Zaidan M, Lescure FX, Brocheriou I, et al. Tubulointerstitial nephropathies in HIV-infected patients over the past 15 years: a clinico-pathological study. Clin J Am Soc Nephrol. 2013;8(6):930–938.
  • Calza L. Renal toxicity associated with antiretroviral therapy. HIV Clin Trials. 2012;13(4):189–211.
  • Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005;352(1):48–62.
  • Grunfeld C, Pang M, Doerrler W, et al. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74(5):1045–1052.
  • Christeff N, Melchior JC, de Truchis P, et al. Increased serum interferon alpha in HIV-1 associated lipodystrophy syndrome. Eur J Clin Invest. 2002;32(1):43–50.
  • Hruz PW, Murata H, Mueckler M. Adverse metabolic consequences of HIV protease inhibitor therapy: the search for a central mechanism. Am J Physiol Endocrinol Metab. 2001;280(4):E549–53.
  • Lenhard JM, Croom DK, Weiel JE, et al. HIV protease inhibitors stimulate hepatic triglyceride synthesis. Arterioscler Thromb Vasc Biol. 2000;20(12):2625–2629.
  • Vigano A, Aldrovandi GM, Giacomet V, et al. Improvement in dyslipidaemia after switching stavudine to tenofovir and replacing protease inhibitors with efavirenz in HIV-infected children. Antivir Ther. 2005;10(8):917–924.
  • Fabiano V, Giacomet V, Vigano A, et al. Long-term body composition and metabolic changes in HIV-infected children switched from stavudine to tenofovir and from protease inhibitors to efavirenz. Eur J Pediatr. 2013;172(8):1089–1096.
  • Papagianni M, Metallidis S, Tziomalos K. Novel insights in the management of dyslipidemia in patients with HIV infection. Curr Pharmacol Rep. 2018;4(2):112–119.
  • Group ISS, Lundgren JD, Babiker AG, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373(9):795–807.
  • Group TAS, Danel C, Moh R, et al. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N Engl J Med. 2015;373(9):808–822.
  • Havlir DV, Kendall MA, Ive P, et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med. 2011;365(16):1482–1491.
  • Abdool Karim SS, Naidoo K, Grobler A, et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med. 2010;362(8):697–706.
  • Fletcher CV, Anderson PL, Kakuda TN, et al. Concentration-controlled compared with conventional antiretroviral therapy for HIV infection. AIDS. 2002;16(4):551–560.
  • Ford J, Khoo SH, Back DJ. The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother. 2004;54(6):982–990.
  • Eichelbaum M, Fromm MF, Schwab M. Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit. 2004;26(2):180–185.
  • Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001;70(2):189–199.
  • Pal D, Kwatra D, Minocha M, et al. Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci. 2011;88(21–22):959–971.
  • Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics. 2003;13(1):19–28.
  • Kohlrausch FB, de Cassia Estrela R, Barroso PF, et al. The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men. Br J Clin Pharmacol. 2010;69(1):95–98.
  • Berno G, Zaccarelli M, Gori C, et al. Potential implications of CYP3A4, CYP3A5 and MDR‐1 genetic variants on the efficacy of Lopinavir/Ritonavir (LPV/r) monotherapy in HIV‐1 patients. J Int AIDS Soc. 2014;17(4S3):19589.
  • Informa S EuResist prediction system. Available from: http://engine.euresist.org/. Accessed on 25 Jun 2018
  • RDI, RDI’s HIV treatment response prediction system HIV-TRePS v9.6.4.0 https://www.hivrdi.org/treps/. Accessed on 25 Jun 2018
  • Beerenwinkel N, Sing T, Lengauer T, et al. Computational methods for the design of effective therapies against drug resistant HIV strains. Bioinformatics. 2005;21(21):3943–3950.
  • Wensing AM, Calvez V, Gunthard HF, et al. 2017 update of the drug resistance mutations in HIV-1. Top Antivir Med. 2017;24(4):132–133.
  • Rhee SY, Gonzales MJ, Kantor R, et al. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 2003;31(1):298–303.
  • Van Laethem K, De Luca A, Antinori A, et al. A genotypic drug resistance interpretation algorithm that significantly predicts therapy response in HIV-1-infected patients. Antivir Ther. 2002;7(2):123–129.
  • Altmann A Keeping models that predict response to antiretroviral therapy up-to-date: fusion of pure data-driven approaches with rules-based methods Available from: http://www.altmann.eu/documents/posters/20090327_EUHIDRW_Altmann_fusion.pdf. Accessed on 25 Jun 2018
  • Beerenwinkel N, Schmidt B, Walter H, et al. Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proc Natl Acad Sci U S A. 2002;99(12):8271–8276.
  • Stanford U. HIV-SEQ database Available from: https://hivdb.stanford.edu/. Accessed on 25 Jun 2018
  • Abhyanker R VIRCONET Trademark Information. Available from: https://www.trademarkia.com/virconet-76013546.html. Accessed on 25 Jun 2018
  • Jiamsakul A, Chaiwarith R, Durier N, et al. Comparison of genotypic and virtual phenotypic drug resistance interpretations with laboratory-based phenotypes among CRF01_AE and subtype B HIV-infected individuals. J Med Virol. 2016;88(2):234–243.
  • Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1. Nature. 1998;391(6664):240.
  • Mullins Lab, u.o.W. Web PSSM Available from: https://indra.mullins.microbiol.washington.edu/webpssm/. Accessed on 25 Jun 2018
  • Kaiser R Geno2pheno[resistance]. Available from: https://www.geno2pheno.org/. Accessed on 25 Jun 2018
  • Cashin K PhenoSeq. Available from: http://tools.burnet.edu.au/phenoseq/. Accessed on 25 Jun 2018
  • Volberding PA. HIV treatment and prevention: an overview of recommendations from the IAS-USA antiretroviral guidelines panel. Top Antivir Med. 2017;25(1):17–24.
  • Woelk CH, Beliakova-Bethell N, Goicoechea M, et al. Gene expression before HAART initiation predicts HIV-infected individuals at risk of poor CD4+ T-cell recovery. AIDS. 2010;24(2):217–222.
  • Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet. 2002;359(9300):30–36.
  • Mukonzo JK, Roshammar D, Waako P, et al. A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. Br J Clin Pharmacol. 2009;68(5):690–699.
  • Haas DW, Smeaton LM, Shafer RW, et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an Adult Aids Clinical Trials Group Study. J Infect Dis. 2005;192(11):1931–1942.
  • de la Tribonniere X, Broly F, Deuffic-Burban S, et al. ABCB1 allele polymorphism is associated with virological efficacy in naive HIV-infected patients on HAART containing nonboosted PIs but not boosted PIs. HIV Clin Trials. 2008;9(3):192–201.
  • Ahuja SK, Kulkarni H, Catano G, et al. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals. Nat Med. 2008;14(4):413–420.
  • Fernandez S, Rosenow AA, James IR, et al. Recovery of CD4+ T Cells in HIV patients with a stable virologic response to antiretroviral therapy is associated with polymorphisms of interleukin-6 and central major histocompatibility complex genes. J Acquir Immune Defic Syndr. 2006;41(1):1–5.
  • Zhu D, Taguchi-Nakamura H, Goto M, et al. Influence of single-nucleotide polymorphisms in the multidrug resistance-1 gene on the cellular export of nelfinavir and its clinical implication for highly active antiretroviral therapy. Antivir Ther. 2004;9(6):929–935.
  • Parathyras J, Gebhardt S, Hillermann-Rebello R, et al. A pharmacogenetic study of CD4 recovery in response to HIV antiretroviral therapy in two South African population groups. J Hum Genet. 2009;54(5):261–265.
  • Nasi M, Borghi V, Pinti M, et al. MDR1 C3435T genetic polymorphism does not influence the response to antiretroviral therapy in drug-naive HIV-positive patients. AIDS. 2003;17(11):1696–1698.
  • Brumme ZL, Dong WW, Chan KJ, et al. Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response. AIDS. 2003;17(2):201–208.
  • Hendrickson SL, Jacobson LP, Nelson GW, et al. Host genetic influences on highly active antiretroviral therapy efficacy and AIDS-free survival. J Acquir Immune Defic Syndr. 2008;48(3):263–271.
  • Saitoh A, Singh KK, Powell CA, et al. An MDR1-3435 variant is associated with higher plasma nelfinavir levels and more rapid virologic response in HIV-1 infected children. AIDS. 2005;19(4):371–380.
  • Saitoh A, Sarles E, Capparelli E, et al. CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children. AIDS. 2007;21(16):2191–2199.
  • Yimer G, Ueda N, Habtewold A, et al. Pharmacogenetic & pharmacokinetic biomarker for efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV infected patients. PLoS One. 2011;6(12):e27810.
  • Gibson RM, Schmotzer CL, Quinones-Mateu ME. Next-generation sequencing to help monitor patients infected with HIV: ready for clinical use? Curr Infect Dis Rep. 2014;16(4):401.
  • Wang C, Mitsuya Y, Gharizadeh B, et al. Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res. 2007;17(8):1195–1201.
  • Dudley DM, Chin EN, Bimber BN, et al. Low-cost ultra-wide genotyping using Roche/454 pyrosequencing for surveillance of HIV drug resistance. PLoS One. 2012;7(5):e36494.
  • Ram D, Leshkowitz D, Gonzalez D, et al. Evaluation of GS junior and MiSeq next-generation sequencing technologies as an alternative to Trugene population sequencing in the clinical HIV laboratory. J Virol Methods. 2015;212:12–16.
  • Gupta S, Taylor T, Patterson A, et al. A robust PCR protocol for HIV drug resistance testing on low-level viremia samples. Biomed Res Int. 2017;2017:4979252.
  • Lengauer T, Pfeifer N, Kaiser R. Personalized HIV therapy to control drug resistance. Drug Discov Today Technol. 2014;11:57–64.
  • Rosen-Zvi M, Altmann A, Prosperi M, et al. Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Bioinformatics. 2008;24(13):i399–406.
  • Revell AD, Wang D, Boyd MA, et al. The development of an expert system to predict virological response to HIV therapy as part of an online treatment support tool. AIDS. 2011;25(15):1855–1863.
  • Rosenbloom DI, Hill AL, Rabi SA, et al. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat Med. 2012;18(9):1378–1385.
  • Churchill MJ, Gorry PR, Cowley D, et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol. 2006;12(2):146–152.
  • Honeycutt JB, Thayer WO, Baker CE, et al. HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy. Nat Med. 2017;23(5):638–643.
  • Cory TJ, He H, Winchester LC, et al. Alterations in P-Glycoprotein expression and function between macrophage subsets. Pharm Res. 2016;33(11):2713–2721.
  • Moreau A, Le Vee M, Jouan E, et al. Drug transporter expression in human macrophages. Fundam Clin Pharmacol. 2011;25(6):743–752.
  • Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998;101(2):289–294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.