630
Views
12
CrossRef citations to date
0
Altmetric
Review

New and emerging drugs for the treatment of acne vulgaris in adolescents

Pages 1009-1024 | Received 11 Nov 2018, Accepted 14 Feb 2019, Published online: 08 Mar 2019

References

  • Gollnick HP, Bettoli V, Lambert J, et al. A consensus-based practical and daily guide for the treatment of acne patients. J Eur Acad Dermatol Venereol. 2016;30(9):1480–1490.
  • Thiboutot DM, Dréno B, Abanmi A, et al. Practical management of acne for clinicians: an international consensus from the global alliance to improve outcomes in acne. J Am Acad Dermatol. 2018;78(2S1):S1–S23.
  • Mwanthi M, Zaeglein L. Update in the management of acne in adolescents. Curr Opin Pediatr. 2018;30(4):492–498.
  • Gollnick H, Cunliffe W, Berson D, et al. Management of acne: a report from a global alliance to improve outcomes in acne. J Am Acad Dermatol. 2003;49(1 Suppl):S1–37.
  • Smithard A, Glazebrook C, Williams HC. Acne Prevalence, knowledge about acne and psychological morbidity in mid-adolescence: a community based study. Br J Dermatol. 2001;145(2):274–279.
  • Dreno B, Poli F. Epidemiology of acne. Dermatology. 2003;206(1):7–10.
  • Ghodsi Z, Orawa H, Zouboulis C. Prevalence, severity and severity risk factors of acne in high school pupils: a community-based study. J Invest Dermatol. 2009;129(9):2136–2141.
  • Bhate K, Williams HC. Epidemiology of acne vulgaris. Br J Dermatol. 2013;168(3):474–485.
  • Eichenfield LF, Krakowski AC, Piggott C, et al. Evidence-based recommendations for the diagnosis and treatment of pediatric acne. Pediatrics. 2013;131(Suppl 3):S163–186.
  • Webster GF. The pathophysiology of acne. Cutis. 2005;76(2 Suppl):4–7.
  • Gebauer K. Acne in adolescents. Aust Fam Physician. 2017;46(12):892–895.
  • Eyuboglu M, Kalay I, Eyoboglu D. Evaluation of adolescents diagnosed with acne vulgaris for quality of life and psychosocial challenges. Indian J Dermatol. 2018;63(2):131–135.
  • Gallitano SM, Berson DS. How acne bumps cause the blues: the influence of acne vulgaris on self-esteem. Int J Womens Dermatol. 2017;4(1):12–17.
  • Eroglu FO, Aktepe E, Erturan I. The evaluation of psychiatric comorbidity, self‐injurious behavior, suicide probability, and other associated psychiatric factors (lonileness, self‐esteem, life satisfaction) in adolescents with acne: A clinical pilot study. J Cosmet Dermatol. 2018 Jul 11. [Epub ahead of print]. DOI:10.1111/jocd.12708.
  • Dunn LK, O’Neill JL, Feldman SR. Acne in adolescents: quality of life, self-esteem, mood, and psychological disorders. Dermatol Online J. 2011;17(1):1.
  • Tan J, Kang S, Leyden J. Prevalence and risk factors of acne scarring among patients consulting dermatologists in the USA. J Drugs Dermatol. 2017;16(2):97–102.
  • Scholz CF, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66(11):4422–4432.
  • Thiboutot D, Gollnick H, Bettoli V, et al. Global alliance to improve outcomes in acne. New insights into the management of acne: an update from the global alliance to improve outcomes in acne group. J Am Acad Dermatol. 2009;60(Suppl 5):S1–50.
  • Nast A, Dréno B, Bettoli V, et al. European evidence-based (S3) guideline for the treatment of acne - update 2016 - short version. J Eur Acad Dermatol Venereol. 2016;30(8):1261–1268.
  • Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74(5):945–973.
  • Nast A, Bayerl C, Borelli C, et al. S2k-guideline for therapy of acne. J Dtsch Dermatol Ges. 2010;8(Suppl2):S1–59.
  • Le Cleach L, Lebrun-Vignes B, Bachelot A, et al. French acne guidelines working group and centre of evidence of dermatology. Guidelines for the management of acne: recommendations from a French multidisciplinary group. Br J Dermatol. 2017;177(4):908–913.
  • Hunt DW, Winters GC, Brownsey RW, et al. Inhibition of sebum production with the acetyl coenzyme A carboxylase inhibitor olumacostat glasaretil. J Invest Dermatol. 2017;137(7):1415–1423.
  • Ottaviani M, Alestas T, Flori E, et al. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. J Invest Dermatol. 2006;126(11):2430–2437.
  • Cunliffe WJ, Holland DB, Clark SM, et al. Comedogenesis: some new aetiological, clinical and therapeutic strategies. Br J Dermatol. 2000;142(6):1084–1091.
  • Cunliffe WJ, Simpson NB. Disorders of the sebaceous gland. In: Champion RH, Burton JL, Burns DA, et al., editors. Textbook of dermatology. 6th ed. Oxford: Blackwell Science; 1998. p. 1927–1984.
  • Janiczek-Dolphin N, Cook J, Thiboutot D, et al. Can sebum reduction predict acne outcome? Br J Dermatol. 2010;163(4):683–688.
  • Trifu V, Tiplica GS, Naumescu E, et al. Cortexolone 17alpha-propionate 1% cream, a new potent antiandrogen for topical treatment of acne vulgaris. A pilot randomized, double-blind comparative study vs. placebo and tretinoin 0.05% cream. Br J Dermatol. 2011;165(1):177–183.
  • Lai JJ, Chan P, Lai KP. The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res. 2012;304(7):499–510.
  • Fritsch M, Orfanos CE, Zouboulis CC. Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol. 2001;116(5):793–800.
  • Kelce W Topical nitric oxide: a first-in-class local antiandrogen therapy for the treatment of acne and male pattern baldness. (White Paper). Novan Therapeutics. [cited 2018 Oct 30]. Available from: http://www.novan.com/files/8613/7398/9326/Topical_nitric_oxide_local_androgen_therapy.pdf
  • Chen W, Zouboulis CC, Orfanos CE. The 5 alpha-reductase system and its inhibitors. Recent development and its perspective in treating androgendependent skin disorders. Dermatology. 1996;193(3):177–184.
  • Chen W, Zouboulis CC. Hormones and the pilosebaceous unit. Dermatoendocrinol. 2009;1(2):81–86.
  • Samson M, Labrie F, Zouboulis CC, et al. Biosynthesis of dihydrotestosterone by a pathway that does not require testosterone as an intermediate in the SZ95 sebaceous gland cell line. J Invest Dermatol. 2010;130(2):602–604.
  • Chen W, Thiboutot D, Zouboulis CC. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol. 2002;119(5):992–1007.
  • Slominski A, Zbytek B, Nikolakis G, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107–123.
  • Sansone G, Davidson W, Cummings B, et al. Sebaceous gland lipogenesis induced by testosterone: early metabolic events. J Invest Dermatol. 1971;57(3):144–148.
  • George R, Clarke S, Thiboutot D. Hormonal therapy for acne. Semin Cutan Med Surg. 2008;27(3):188–196.
  • Celasco G, Moro L, Bozzella R, et al. Biological profile of cortexolone 17alpha- propionate (CB-03-01), a new topical and peripherally selective androgen antagonist. Arzneimittelforschung. 2004;54(12):881–886.
  • An evaluation of the adrenal suppression potential and pharmacokinetic properties of CB-03-01 crema in subjects with acne: Identifier NCT01831960 Clinical Trials: A service of the U.S. National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A Phase 2 Dose Escalating Study to Evaluate the Safety and Efficacy of CB-03-01 Cream in Subjects With Facial Acne Vulgaris: Identifier: NCT01631474. Clinical Trials: A service of the U.S. National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • An evaluation of the adrenal suppression potential and pk of cb-03-01 cream in pediatric patients with acne vulgaris: Identifier NCT02720627. Clinical Trials: A service of the U.S. National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A study to evaluate the safety and efficacy of cb-03-01 cream, 1% in subjects with facial acne vulgaris: Identifier NCT02608476 Clinical Trials: A service of the U.S. National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A study to evaluate the safety and efficacy of cb-03-01 cream, 1% in subjects with facial acne vulgaris: Identifier NCT02608450. Clinical Trials: A service of the U.S. National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Yang Z, Chang YJ, Yu IC, et al. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nat Med. 2007;13(3):348–353.
  • Lai JJ, Lai KP, Chuang KH, et al. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest. 2009;119(12):3739–3751.
  • A phase 2 study of ASC-J9 cream in acne vulgaris. Identifier NCT00525499. Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from:: www.clinicaltrials.gov
  • Topical ASC-J9 cream for acne: Identifier NCT01289574. Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Rosignoli C, Nicolas JC, Jomard A, et al. Involvement of the SREBP pathway in the mode of action of androgens in sebaceous glands in vivo. Exp Dermatol. 2003;12(4):480–489.
  • Smythe CD, Greenall M, Kealy T. The activity of HMG-CoA reductase and acetyl-CoA carboxylase in human apocrine sweat glands, sebaceous glands, and hair follicles is regulated by phosphorylation and by exogenous cholesterol. J Invest Dermatol. 1998;111(1):139–148.
  • Kim KH. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 1997;17:77–99.
  • Harwood HJ Jr. Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition. Expert Opin Ther Targets. 2005;9(2):267–281.
  • Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci. 2005;62(16):1784–1803.
  • Melnick B. Olumacostat glasaretil,
a promising topical sebum-suppressing agent
that affects all major pathogenic factors of acne vulgaris. J Invest Dermatol. 2017;137(7):1405–1408.
  • Melnick B. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–388.
  • McGarry JD, Brown NF. The mitochondrial carnitine palmitoyl-transferase system. From concept to molecular analysis. Eur J Biochem. 1997;244(1):1–14.
  • Bissonnette R, Poulin Y, Drew J, et al. Olumacostat glasaretil, a novel topical sebum inhibitor, in the treatment of acne vulgaris: A phase IIa, multicenter, randomized, vehicle-controlled study. J Am Acad Dermatol. 2017;76(1):33–39.
  • A safety, tolerability and preliminary efficacy study of DRM01B topical gel: Identifier NCT01936324 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A dose-ranging study of DRM01 in subjects with acne vulgaris: Identifier: NCT02431052 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A study of olumacostat glasaretil gel in subjects with acne vulgaris: Identifier: NCT03073486 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A study of olumacostat glasaretil gel in subjects with acne vulgaris: Identifier NCT03028363 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A long-term safety study of olumacostat glasaretil gel in subjects with acne vulgaris: Identifier: NCT03127956 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Del Rosso JQ, Stein-Gold L, Kircik L, et al. Olumacostat glasaretil (DRM01) for the treatment of acne vulgaris: primary results from the DRM01-ACN02 phase 2b randomized controlled trial. J Am Acad Dermatol. 2017;76(6Suppl 1):AB184.
  • Gribbon EM, Cunliffe WJ, Holland KT. Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol. 1993;139(8):1745–1751.
  • McGinley KJ, Webster GF, Ruggieri MR, et al. Regional variations in density of cutaneous propionibacteria: correlation of Propionibacterium acnes populations with sebaceous secretion. J Clin Microbiol. 1980;12(5):672–675.
  • Thody AJ, Shuster S. Control of sebaceous gland function in the rat by alphamelanocyte-stimulating hormone. J Endocrinol. 1975;64(3):503–510.
  • Thiboutot D, Sivarajah A, Gilliland Z, et al. The melanocortin 5 receptor is expressed in human sebaceous glands and rat preputial cells. J Invest Dermatol. 2000;115(4):614–619.
  • Zhang L, Anthonavage M, Huang Q, et al. Proopiomelanocortin peptides and sebogenesis. Ann N Y Acad Sci. 2003;994:154–161.
  • Eisinger M, Li W-H, Anthonavage M, et al. A melanocortin receptor 1 and 5 antagonist inhibits sebaceous gland differentiation and the production of sebum-specific lipids. J Dermatol Sci. 2011;63(1):23–32.
  • Zhang L, Li W-H, Anthonavage M, et al. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides. 2006;27(2):413–420.
  • Zhang L, Li WH, Anthonavage M, et al. Melanocortin-5 receptor and sebogenesis. Eur J Pharmacol. 2011;660(1):202–206.
  • A multi-center, double-blind, vehicle controlled, phase ii study of JNJ 10229570-AAA for the treatment of acne vulgaris. Identifier: NCT01326780 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Smith TM, Cong Z, Gilliland KL, et al. Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response elementbinding protein-1. J Invest Dermatol. 2006;126(6):1226–1232.
  • Smith TM, Gilliland K, Clawson GA, et al. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3- kinase/Akt pathway. J Invest Dermatol. 2008;128(5):1286–1293.
  • Ristow HJ, Messmer TO. Basic fibroblast growth factor and insulin-like growth factor 1 are strong mitogens for cultured mouse keratinocytes. J Cell Physiol. 1988;137(2):277–284.
  • Krane JF, Murphy DP, Carter DM, et al. Synergistic effects of epidermal growth factor (EGF) and insulin-like growth factor I/somatomedin C (IGF-I) on keratinocyte proliferation may be mediated by IGF-I transmodulation of the EGF receptor. J Invest Dermatol. 1991;96(4):419–424.
  • Barreca A, De Luca M, Del Monte P, et al. In vitro paracrine regulation of human keratinocyte growth by fibroblast- derived insulin-like growth factors. J Cell Physiol. 1992;151(2):262–268.
  • Gilhar A, Ish-Shalom S, Pillar T, et al. Effect of antiinsulin-like growth factor
1 on epidermal proliferation of human skin transplanted onto nude mice treated with growth hormone. Endocrinology. 1994;134(1):229–232.
  • Valentinis B, Baserga R. IGF-I receptor signalling in transformation and differentiation. Mol Pathol. 2001;54(3):133–137.
  • Sadagurski M, Yakar S, Weingarten G, et al. Insulin-like growth factor
1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation. Mol Cell Biol. 2006;26(7):2675–2687.
  • Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol. 2009;18(10):833–841.
  • Alestas T, Ganceviciene R, Fimmel S, et al. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84(1):75–87.
  • Kurokawa I, Danby FW, Ju Q, et al. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009;18(10):821–832.
  • Aizawa H, Niimura M. Elevated serum insulin-like growth factor-1 (IGF-1) levels in women with postadolescent acne. J Dermatol. 1995;22(4):249–252.
  • Cappel M, Mauger D, Thiboutot D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch Dermatol 76. 2005;141(3):333–338.
  • Vora S, Ovhal A, Jerajani H, et al. Correlation of facial sebum to serum insulin-like growth factor-1 in patients with acne. Br J Dermatol. 2008;159(4):990–991.
  • Isard O, Knol AC, Arie`S MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis
and induces keratinocyte proliferation. J Invest Dermatol. 2011;131(1):59–66.
  • Im M, Kim SY, Sohn KC, et al. Epigallocatechin-3-gallate suppresses IGF-1 induced lipogenesis and cytokine expression in SZ95 sebocytes. J Invest Dermatol. 2012;132(12):2700–2708.
  • Yoon JY, Kwon HH, Min SU, et al. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J Invest Dermatol. 2013;133(2):429–440.
  • Liao S. The medicinal action of androgens and green tea epigallocatechin gallate. Hong Kong Med J. 2001;7(4):369–374.
  • Mahmood T, Akhtar N, Khan BA, et al. Outcomes of 3% green tea emulsion on
skin sebum production in male
volunteers. Bosn J Basic Med Sci. 2010;10(3):260–264.
  • Elsaie ML, Abdelhamid MF, Elsaaiee LT, et al. The efficacy of topical
2% green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8(4):358–364.
  • Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes: Identifier
NCT01687556. Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Kwon HH, Yoon JY, Park SY, et al. Activity-guided purification identifies lupeol, a pentacyclic triterpene, as a therapeutic agent multiple pathogenic factors of acne. J Invest Dermatol. 2015;135(6):1491–1500.
  • Clinical study for the effectiveness and safety of topical lupeol in mild to moderate acne: Identifier: NCT02205892 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Clinical trial of lupeol for mild-moderate acne: Identifier NCT02152865 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Oláh A, Tóth BI, Borbíró I, et al. Cannabidiol exerts sebostatic and anti-inflammatory effects on human sebocytes. J Clin Invest. 2014 Sep;124(9):3713–3724.
  • A randomized, double-blind, vehicle-controlled study to evaluate the safety and efficacy of BTX-1503 in patients with moderate to severe acne vulgaris: Identifier NCT03573518 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Leyden J, Stein-Gold L, Weiss J. Why topical retinoids are mainstay of therapy for acne. Dermatol Ther (Heidelb). 2017;7(3):293–304.
  • Fisher GJ, Talwar HS, Xiao JH, et al. Immunological identification and functional quantification of retinoic acid and retinoid X receptor proteins in human skin. J Biol Chem. 1994;269(32):20629–20635.
  • Brand N, Petkovich M, Krust A, et al. Identification of
a second human retinoic acid receptor. Nature. 1988;332(6167):850–853.
  • Beard RL, Chandraratna RAS. RAR-selective ligands: receptor subtype and function selectivity. In: Nau H, Blaner WS, editors. Retinoids: the biochemical and molecular basis of vitamin A and retinoid action. Berlin: Springer; 1999. p. 185–213.
  • Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10(9):940–954.
  • Endly DC, Miller RA. Oily skin: a review of treatment options. J Clin Aesthet Dermatol. 2017;10(8):49–55.
  • Redfern CP, Todd C. Retinoic acid receptor expression in human skin keratinocytes and dermal fibroblasts in vitro. J Cell Sci. 1992;102(Pt1):113–121.
  • Thoreau E, Arlabosse JM, Bouix-Peter C, et al. Structure-based design of Trifarotene (CD5789), a potent and selective RARγ agonist for the treatment of acne. Bioorg Med Chem Lett. 2018;28(10):1736–1741.
  • Aubert J, Piwnica D, Bertino B, et al. Nonclinial and human pharmacology of the potent and selective topical retinoic acid receptor-γ agonist trifarotene. Br J Dermatol. 2018;179(2):442–456.
  • A randomized, multi-center, investigator-blind, vehicle- and active-controlled, phase 2 study to assess the efficacy and safety of different concentrations of CD5789 cream applied once daily in subjects with moderate to severe acne vulgaris: Identifier: NCT01616654 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A long-term safety and efficacy study of CD5789 (trifarotene) 50 µg/g cream in subjects with acne vulgaris: Identifier NCT02189629 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A multi-center, randomized, double-blind, parallel-group vehicle controlled study to compare the efficacy and safety of CD5789 (trifarotene) 50µg/g cream versus vehicle cream in subjects with acne vulgaris: Identifier NCT02556788 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A multi-center, randomized, double-blind, parallel-group vehicle controlled study to compare the efficacy and safety of CD5789 (trifarotene) 50µg/g cream versus vehicle cream in subjects with acne vulgaris: Identifier NCT02566369 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Leyden JJ. The evolving role of Propionibacterium acnes in acne. Semin Cutan Med Surg. 2001;20(3):139–143.
  • Cebrian R, Arevalo S, Rubiño S, et al. Control of Propionibacterium acnes by natural antimicrobiaL substances: role of the bacteriocin AS-48 and lysozyme. SciRep. 2018;8(1):11766.
  • Jeremy AH, Holland DB, Roberts SG, et al. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol. 2003;121(1):20–27.
  • Rosen T. The Propionibacterium acne genome: from the laboratory to the clinic. J Drugs Dermatol. 2007;6(6):582–586.
  • Bruggemann H, Henne A, Hoster F, et al. The complete genome sequence of Propionibacterium acnes, commensal of the skin. Science. 2004;305(5684):671–673.
  • Sugisaki H, Yamanaka K, Kakeda M, et al. Increased interferon-gamma, interleukin-12p40 and IL-8 production in propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease. J Dermatol Sci. 2009;55(1):47–52.
  • Dessinioti C, Katsambas AD. The role of propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol. 2010;28(1):2–7.
  • Del Rosso JQ, Kircik LH. The sequence of inflammation, relevant biomarkers, and the pathogenesis of acne vulgaris: what does recent research show and what does it mean to the clinician? J Drugs Dermatol. 2013;12(Suppl):109–115.
  • Krause K, Schnitger A, Fimmel S, et al. Corticotropin-releasing hormone skin signaling is receptor-mediated and is predominant in the sebaceous glands. Horm Metab Res. 2007;39(2):166–170.
  • Isard O, Knol AC, Castex-Rizzi N, et al. Cutaneous induction of corticotropin releasing hormone by propionibacterium acnes extracts. Dermatoendocrinol. 2009;1(2):96–99.
  • Leyden JJ, McGinley KJ, Mills OH, et al. Propionibacterium levels in patients with and without acne. J Invest Dermatol. 1975;65(4):382–384.
  • Dreno B, Pecastaings S, Corvec S, et al. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32(Suppl. 2):5–14.
  • Pecastaings S, Roques C, Nocera T, et al. Characterisation of Cutibacterium acnes phylotypes in acne and in vivo exploratory evaluation of Myrtacine. J Eur Acad Dermatol Venereol. 2018;32(Suppl. 2):15–23.
  • Barnard E, Shi B, Kang D, et al. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep. 2016;6:39491.
  • Szabo K, Erdei L, Bolla BS, et al. Factors shaping the composition of the cutaneous microbiota. Br J Dermatol. 2017;176(2):344–351.
  • Tan AW, Tan HH. Acne vulgaris: a review of antibiotic therapy. Expert Opin Pharmacother. 2005;6(3):409–418.
  • Eady EA, Gloor M, Leyden JJ. Propionibacterium acnes resistance: a worldwide problem. Dermatology. 2003;206(1):54–56.
  • Ross JI, Snelling AM, Carnegie E, et al. Antibiotic-resistant acne: lessons from Europe. Br J Dermatol. 2003;148(3):467–478.
  • Dessinioti C, Katsambas A. Propionibacterium acnes and antimicrobial resistance in acne. Clin Dermatol. 2017;35(2):163–167.
  • Coates P, Vyakrnam S, Eady EA, et al. Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-year surveillance data and snapshot distribution study. Br J Dermatol. 2002;146(5):840–848.
  • A randomized, multicenter, double-blind, placebo-controlledsStudy to evaluate the efficacy and safety of 1.5 mg/kg per day of sarecycline compared to placebo in the treatment of acne vulgaris: Identifier: NCT02320149 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A multi-center open-label evaluation of the safety of sarecycline tablets in the Treatment of acne vulgaris: Identifier: NCT02413346 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A randomized, multicenter, double-blind, placebo-controlled study to evaluate the efficacy and safety of 1.5 mg/kg per day of sarecycline compared to placebo in the treatment of acne vulgaris: Identifier NCT02322866 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Ramage G, Tunney MM, Patrick S, et al. Formation of propionibacterium
acnes biofilms on orthopaedic
biomaterials and their susceptibility to antimicrobials. Biomaterials. 2003;24(9):3221–3227.
  • Burkhart CN, Burkhart CG. Microbiology’s principle of biofilms as a
major factor in the pathogenesis of acne
vulgaris. Int J Dermatol. 2003;42(12):925–927.
  • Coenye T, Peeters E, Nelis HJ. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res Microbiol. 2007;158(4):386–3892.
  • Green SJ, Mellouk S, Hoffman SL, et al. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett. 1990;25(1–3):15–19.
  • Green SJ, Nacy CA, Schreiber RD, et al. Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice. Infect Immun. 1993;61(2):689–698.
  • Qin M, Landriscina A, Rosen JM, et al. Nitric oxide-releasing nanoparticles prevent propionibacterium acnes–induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response. J Invest Dermatol. 2015;135(11):2723–2731.
  • Sokanovic SJ, Baburski AZ, Janjic MM, et al. The opposing roles of nitric oxide and cGMP in the age-associated decline in rat testicular steroidogenesis. Endocrinology. 2013;154(10):3914–3924.
  • Del Punta K, Charreau EH, Pignataro OP, et al. Nitric oxide inhibits Leydig cell steroidogenesis. Endocrinology. 1996;137(12):5337–5343.
  • Pomerantz D, Pitelka V. Nitric oxide is a mediator of the inhibitory effect of activated macrophages on production of androgen by the Leydig cell of the mouse. Endocrinology. 1998;139(3):922–931.
  • Drewett JG, Adams-Hays RL, Ho BY, et al. Nitric oxide potently inhibits the rate-limiting enzymatic step in steroidogenesis. Mol Cell Endocrinol. 2002;194(1–2):39–50.
  • A phase 1, single-center, open-label pharmacokinetic, safety and tolerability study of SB204 in adolescents with moderate to severe acne vulgaris: NCT02801903 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A phase 2, multi-center, randomized, evaluator-blinded, vehicle-controlled study comparing the efficacy, tolerability, and safety of SB204 gel and vehicle gel once or twice daily in the treatment of acne vulgaris: Identifier NCT02242760 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Baldwin H, Blanco D, McKeever C, et al. Results of a phase 2 efficacy and safety study with SB204, an investigational topical nitric oxide-releasing drug for the treatment of acne vulgaris. J Clin Aesthet Dermatol. 2016;9(8):12.
  • Eichenfield LF, Gold WK, Cook-Bolden FE, et al. Results of a phase 2, randomized,vehicle-controlled study evaluating the efficacy,tolerability, and safety of daily or twice daily SB204 for the treatment of acne vulgaris. J Drugs Dermatol. 2016;15(12):1496–15027.
  • A phase 3 multi-center, open label study evaluating the long term safety of SB204 once daily in the treatment of acne vulgaris: Identifier NCT02798120 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A phase 3 multi-center, randomized, double-blinded, vehicle-controlled, parallel group study comparing the efficacy, tolerability and safety of SB204 and vehicle gel once daily in the treatment of acne vulgaris: Identifier: NCT02672332 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A phase 3 multi-center, randomized, double-blinded, vehicle-controlled, parallel group study comparing the efficacy, tolerability and safety of SB204 and vehicle gel once daily in the treatment of acne vulgaris: Identifier: NCT02667444 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A multicenter, randomized, double-blind, vehicle-controlled, parallel group comparison study to evaluate the safety and efficacy of UHE-101 cream 1% when applied twice daily for 12 weeks in subjects with facial acne vulgaris: Identifier NCT03307577 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • AAPPTEC. Safety Data Sheet. [cited 2018 Oct 30]. Available at: https://www.peptide.com/msds/MSDS%20UHE101%20H-beta-HGlu%20HCl.pdf
  • Harder J, Tsuruta D, Murakami M, et al. What is the role of antimicrobial peptides (AMP) in acne vulgaris? Exp Dermatol. 2013;22(6):386–391.
  • Vaara M. New approaches in peptide antibiotics. Curr Opin Pharmacol. 2009;9(5):571–576.
  • Cotter P, Ross RP, Hill C. Bacteriocins — a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11(2):95–105.
  • Montalban-Lopez M, Sanchez-Hidalgo M, Valdivia E, et al. Are bacteriocins underexploited? Novel applications for OLD antimicrobials. Curr Pharm Biotechnol. 2011;12(8):1205–1220.
  • Van Heel AJ, Montalban-Lopez M, Kuipers OP. Evaluating the feasibility of antibiotics as an alternative therapy against bacterial infections in humans. Expert Opin Drug Metab Toxicol. 2011;7(6):675–680.
  • Shin JM, Gwak JW, Kamarajan P, et al. Biomedical applications of nisin. J Appl Microbiol. 2016;120(6):1449–1465.
  • Melo MN, Dugourd D, Castanho MA. Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov. 2006;1(2):201–207.
  • Marta Guarna M, Coulson R, Rubinchik E. Anti-inflammatory activity of cationic peptides: application to the treatment of acne vulgaris. FEMS Microbiol Lett. 2006;257(1):1–6.
  • Pan CY, Chen JY, Lin TL, et al. In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides. 2009;30(6):1058–1068.
  • Sader HS, Fedler KA, Rennie RP, et al. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother. 2004;48(8):3112–3118.
  • Rubinchik E, Dugourd D, Algara T, et al. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009;34(5):457–461.
  • A phase 2, randomized, double-blind, vehicle-controlled, parallel group multicenter study to evaluate the safety and efficacy of CLS001 topical gel versus vehicle applied once daily for 12 weeks to female subjects with moderate to severe acne vulgaris: Identifier NCT02571998 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A phase ii, randomized, vehicle-controlled, double-blind, multi-center study to evaluate safety and efficacy of MBI 226 1.25% and 2.5% acne solutions applied topically for 12 weeks to subjects with acne vulgaris: Identifier NCT00211497 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • A phase 2, randomized, vehicle-controlled, double-blind, multicenter study to evaluate the safety and efficacy of three once-daily CLS001 topical gels versus vehicle administered for 12 weeks to subjects with acne vulgaris: Identifier NCT02066545 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Deidda F, Amoruso A, Nicola S, et al. New approach in acne theraoy: a specific bacteriocin activity and a targeted IL-8 property in just 1 probiotic strain, the L. salivarius LS03. J Clin Gastroenterol. 2018;52(Suppl1):S78–S81.
  • Faccone D, Veliz O, Corso A, et al. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. Eur J Med Chem. 2014;71:31–35.
  • Borunda JSA, Castro JARM, Santoyo PP, et al. Semi- solid topical composition containing pirfenidone and modified diallyl disulfide oxide (M-DDO) for eliminating or preventing acne. Google Patents. 2016. [cited 2018 Oct 15]. Available from: https://patents.google.com/patent/US20160228424A1/en
  • Ortega-Peña S, Hidalgo-Gonzalez C, Robson MC, et al. In vitro microbicidal, anti-biofilm and cytotoxic effects of different commercial antiseptics. Int Wound J. 2017;14(3):470–479.
  • Knuppel L, Ishikawa Y, Aichler M, et al. A novel antifibrotic mechanism of nintedanib and pirfenidone: inhibition of collagen fibril assembly. Am J Respir Cell Mol Biol. 2017;57(1):77–90.
  • Molecular and clinical study of the effect of zaxcell versus effezel in the inflammatory and scarring process of moderate and severe acne: Identifier NCT03076320. Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Nagy I, Pivarcsi A, Kis K, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8(8):2195–2205.
  • Nagy I, Pivarcsi A, Koreck A, et al. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and
interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124(5):931–938.
  • Studie van de huidmicrobiota en het potentieel van een crème met probiotica bij personen met acne: Identifier NCT03469076 Clinical Trials: A service of the U.S. National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Zouboulis C, Dessinioti D, Tsatsou F, et al. Anti-acne drugs in phase 1 and 2 clinical trials. Expert Opin Investig Drugs. 2017;26(7):813–823.
  • Bernhardt MJ, Myntti MF. Topical treatment with an agent disruptive to P. acnes biofilm provides positive therapeutic response: results of a randomized clinical trial. J Drugs Dermatol. 2016;15(6):677–683.
  • Next Science develops biofilm-fighting acne treatment gel-NextScience. [cited 2018 Oct 15]. Available from: https://www.nextscience.com/2016/05/01/next-science-develops-biofilm-fighting-acne-treatment-gel/
  • Araviiskaia E, Dreno B. The role of topical dermocosmetics in acne vulgaris. J Eur Acad Dermatol Venereol. 2016;30(6):926–935.
  • A multi-center, double-blind, vehicle-controlled study to evaluate the clinical effect of daily Next Science™ Acne gel (NAG) on mild to moderate facial acne: Identifier: NCT02404285 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Zouboulis CC. Leukotrien-antagonisten bei atopischen Erkrankungen und Akne. Akt Dermatol. 2003;29:419–425.
  • Acebilustat (CTX-4430). CFF Clinical Trial Tools. [cited 2018 Oct 18]. Available from: https://www.cff.org/Trials/Pipeline/details/108/Acebilustat-CTX-4430
  • Elborn JS, Bhatt L, Grosswald R, et al. Phase I studies of acebilustat: pharmacokinetics, pharmacodynamics, food effect, and cyp3a induction. Clin Transl Sci. 2017;10(1):20–27.
  • Alestas T, Ganceviciene R, Fimmel S, et al. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med (Berl). 2006;84(1):75–87.
  • Zouboulis CC, Seltmann H, Alestas T. Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis. Exp Dermatol. 2010;19(2):148–150.
  • A multi-centre, double-blind, randomized, parallel group, placebo controlled efficacy and safety study of oral CTX-4430 for the treatment of moderate to severe facial acne vulgaris: Identifier: NCT02385760 Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Owyang AM, Issafras H, Corbin J, et al. XOMA 052, a potent, high affinity monoclonal antibody for the treatment of IL-1b-mediated diseases. MAbs. 2011;3(1):49–60.
  • Contassot E, Beer HD, French LE. Interleukin-1, inflammasomes, autoinflammation and the skin. Swiss Med Wkly. 2012;142:w13590.
  • Hoffman HM, Wanderer AA. Inflammasome and IL-1beta-Mediated Disorders. Curr Allergy Asthma Rep. 2010;10(4):229–235.
  • Sahdo B, Sarndahl E, Elgh F, et al. Propionibacterium acnes activates caspase-1 in human neutrophils. APMIS. 2013;121(7):652–663.
  • Kistowska M, Gehrke S, Jankovic D, et al. IL-1b drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J Invest Dermatol. 2014;134(3):677–685.
  • Qin M, Pirouz A, Kim MH, et al. Propionibacterium acnes induces IL-1b secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol. 2014;134(2):381–388.
  • Avelti-Weder C, Babians-Brunner A, Keller C, et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 2012;35(8):1654–1662.
  • Reichert JM. Which are the antibodies to watch in 2013? MAbs. 2013;5(1):1–4.
  • A randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of gevokizumab in subjects with moderate to severe acne vulgaris Identifier NCT01498874. Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • XOMA announces encouraging interim result from gevokizumab phase 2 study for moderate to severe acne vulgaris-Aktuell-Servier (Suisse) S.A. Conversum, Preterax, Fludex,Diamicron, Locabiotal, Arcalion, Daflon. [cited 2018 Oct 30]. Accessed from: https://www.servier.ch/de/aktuell/news-detail/2/xoma-announces-encouraging-interim-results-from-gevokizumab-phase-2-study-for-moderate-to-severe-acne-vulgaris/
  • Walocko FM, Eber AE, Keri JE, et al. The role of nicotinamide in acne treatment. Dermatol Ther. 2017;30(5). Epub 2017 Feb 21. DOI:10.1111/dth.12481.
  • Grange PA, Raingeaud J, Calvez V, et al. Nicotinamide inhibits propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways. J Dermatol ScI. 2009;56(2):106–112.
  • Fivenson DP. The mechanisms of action of nicotinamide and zinc in inflammatory skin disease. Cutis. 2006;77(1 Suppl):5–10.
  • Wohlrab J, Kreft D. Niacinamide: mechanisms of action and its topical use in dermatology. Skin Pharmacol Physiol. 2014;27(6):311–315.
  • Draelos ZD, Matsubara A, Smiles K. The effect of 2% niacinamide on facial sebum production. J Cosmet Laser Ther. 2006;8(2):96–101.
  • Shalita AR, Smith JG, Parich LC, et al. Topical nicotinamide compared with clindamycin gel in the treatmentof inflammatory acne vulgaris. Int J Dermatol. 2995;34(6):434–437.
  • Khodaeiani E, Fouladi RF, Amirnia M, et al. Topical 4% nicotinamide vs. 1% clindamycin in moderate inflammatory acne vulgaris. Int J Dermatol. 2013;52(8):999–1004.
  • Morganti P, Beradesca E, Guarneri B, et al. Topical clindamycin 1% vs. linoleic acid-rich phosphatidylcholine and nicotinamide 4% in the treatment of acne: a multicentre-randomized trial. Int J Cosmet Sci. 2011;33(5):467–476.
  • Efficacy and tolerability of nicotinamide plus cream for moderate acne vulgaris in indonesia: a multicenter clinical trial: Identifier NCT03626298. Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Sodium 3-[ethyl(3-methoxyphenyl)amino]-1-propanesulfonate. C12H18NNaO4S. ChemSpider. [cited 2018 Oct 30]. Accesed from: http://www.chemspider.com/Chemical-Structure.8119613.html?rid=6e6abbbd-1231-4cf5-a2b7-7ffa487b2fcf&page_num=0
  • A multi-center, double-blind, randomized, placebo controlled, parallel-group study to evaluate the efficacy and safety of ADPS in the treatment of acne vulgaris: Identifier: NCT02935036 Clinical Trial: Identifier NCT03626298. Clinical Trials: A service of the U.S National Institutes of Health. [cited 2018 Oct 30]. Available from: www.clinicaltrials.gov
  • Stein-Gold L, Weiss J, Rueda MJ, et al. Moderate and Severe Inflammatory acne vulgaris effectively treated with single-agent therapy by a new fixed-dose combination adapalene 0.3%/benzoyl peroxide 2.5% gel: a randomized, double-blind, parallel-group, controlled study. Am J Clin Dermatol. 2016;17(3):293–303.
  • Dreno B, Tan J, Martel P, et al. Adapalene 0.1%/benzoyl peroxide 2.5% gel reduces the risk of atrophic scar formation in moderate inflammatory acne: a split-face randomized controlled trial. J Eur Acad Dermatol Venereol. 2017;31(4):737–742.
  • Khalil S, Bardawil T, Stephan C. Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J Dermatolog Treat. 2017;28(8):684–696.
  • Tenaud I, Khammari A, Dreno B. In vitro modulation of TLR-2, CD1d and IL-10 by adapalene on normal human skin and acne inflammatory lesions. Exp Dermatol. 2007;16(6):500–506.
  • Eichenfield LF, Draelos Z, Lucky AW, et al. Preadolescent moderate acne
vulgaris: a randomized trial of the
efficacy and safety of topical adapalene-
benzoyl peroxides. J Drugs Dermatol. 2013;12(6):611–618.
  • Zeichner JA. Optimizing topical combination therapy for the treatment of acne vulgaris. J Drugs Dermatol. 2012;11(3):313–317.
  • Dreno B, Thiboutot D, Gollnick H, et al. Antibiotic stewardship in dermatology: limiting antibiotic use in acne. Eur J dermatol. 2014;24(3):330–334.
  • Simonart T, Dramaix M. Treatment of acne with topical antibiotics: lessons from clinical studies. Br J Dermatol. 2005;153(2):395–403.
  • Zaenglein AL. Topical retinoids in the treatment of acne vulgaris. Semin Cutan Med Surg. 2008;27(3):177–182.
  • Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379(9813):361–372.
  • Lookingbill DP, Chalker DK, Lindholm JS, et al. Treatment of acne with a combination clindamycin/benzoyl peroxide gel compared with clindamycin gel, benzoyl peroxide gel and vehicle gel: combined results of two double-blind investigations. J Am Acad Dermatol. 1997;37(4):590–595.
  • Anderson KL, Dothard EH, Huang KE, et al. Frequency of primary nonadherence to acne treatment. JAMA Dermatol. 2015;151(6):623–626.
  • Yentzer BA, Ade RA, Fountain JM, et al. Simplifying regimens promotes greater adherence and outcomes with topical acne medications: a ran- domized controlled trial. Cutis. 2010;86(2):103–108.
  • Tom WL, Barrio VR. New insights into adolescent acne. Curr Opin Pediatr. 2008;20(4):436–440.
  • Del Rosso JQ, Stein Gold L, Johnson SM, et al. Efficacy and safety of adapalene 0.3%/benzoyl peroxyde 2.5% gel plus oral doxycycline in subjects with severe inflammatory acne who are candidate for Oral isotretinoin. J Drugs Dermatol. 2018 1;17(3):264–273.
  • Dreno B, Bisonnette R, Gagne-Henley A, et al. Prevention and reduction of atrophic scars with adapalene 0.3%/benzoyl peroxide 2.5% gel in subjects with moderate or severe facial acne: results of a 6-month randomized vehicle-controlled trial using intra-individual comparison. Am J Clin Dermatol. 2018;19(2):275–286.
  • Adler BL, Kornmehl H, Armstrong AW. Antibiotic resistance in acne treatment. JAMA Dermatol. 2017;153(8):810–811.
  • Kuet K, Fryatt E, Eady A, et al. Antibiotic resistance rates in cutaneous propionibacteria from UK patients with acne are not falling. Clin Exp Dermatol. 2018;43(4):467–468.
  • Nakase K, Nakaminami H, Takenaka Y, et al. Propionibacterium acnes is developing gradual increase in resistance to oral tetracyclines. J Med Microbiol. 2017;66(1):8–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.