622
Views
15
CrossRef citations to date
0
Altmetric
Review

Important new therapies for methicillin-resistant Staphylococcus aureus

, , &
Pages 2317-2334 | Received 11 Jul 2019, Accepted 30 Sep 2019, Published online: 17 Oct 2019

References

  • Peebles E, Morris R, Chafe R. Community-associated methicillin-resistant staphylococcus aureus in a pediatric emergency department in newfoundland and labrador. Can J Infect Dis Med Microbiol. 2014;25(1):13–16. Spring.
  • International Working Group on the Classification of Staphylococcal Cassette Chromosome E. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009 Dec;53(12):4961–4967.
  • Drougka E, Foka A, Liakopoulos A, et al. A 12-year survey of methicillin-resistant staphylococcus aureus infections in Greece: ST80-IV epidemic? Clin Microbiol Infect. 2014 Nov;20(11):O796–803.
  • Wallin TR, Hern HG, Frazee BW. Community-associated methicillin-resistant staphylococcus aureus. Emerg Med Clin North Am. 2008 May;26(2):431–55, ix.
  • Naimi TS, LeDell KH, Como-Sabetti K, et al. Comparison of community- and health care-associated methicillin-resistant staphylococcus aureus infection. JAMA. 2003 Dec 10;290(22):2976–2984.
  • Kong EF, Johnson JK, Jabra-Rizk MA. Community-associated methicillin-resistant staphylococcus aureus: an enemy amidst us. PLoS Pathog. 2016 Oct;12(10):e1005837.
  • Deresinski S. Methicillin-resistant staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey. Clin Infect Dis. 2005 Feb 15;40(4):562–573.
  • Valsesia G, Rossi M, Bertschy S, et al. Emergence of SCCmec type IV and SCCmec type V methicillin-resistant staphylococcus aureus containing the panton-valentine leukocidin genes in a large academic teaching hospital in central Switzerland: external invaders or persisting circulators? J Clin Microbiol. 2010 Mar;48(3):720–727.
  • Alcoceba E, Mena A, Cruz PM, et al. Molecular epidemiology of methicillin-resistant staphylococcus aureus in Majorcan hospitals: high prevalence of the epidemic clone EMRSA-15. Clin Microbiol Infect. 2007 Jun;13(6):599–605.
  • Choo EJ. Community-associated methicillin-resistant staphylococcus aureus in nosocomial infections. Infect Chemother. 2017 Jun;49(2):158–159.
  • Styers D, Sheehan DJ, Hogan P, et al. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob. 2006 Feb 9;5:2.
  • National Nosocomial Infections Surveillance S. National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004 Dec;32(8):470–485.
  • European Centre for Disease Prevention and Control. European antimicrobial resistance surveillance network (EARS-net). 2018 [cited 2019 Jun 06] Available from: http://ecdc.europa.eu/en/activities/surveillance/EARS-Net/Pages/index.aspx
  • Falagas ME, Karageorgopoulos DE, Leptidis J, et al. MRSA in Africa: filling the global map of antimicrobial resistance. PLoS One. 2013;8(7):e68024.
  • Chen CJ, Huang YC. New epidemiology of staphylococcus aureus infection in Asia. Clin Microbiol Infect. 2014 Jul;20(7):605–623.
  • Dantes R, Mu Y, Belflower R, et al. Emerging infections program-active bacterial core surveillance MSI, national burden of invasive methicillin-resistant staphylococcus aureus infections, United States, 2011. JAMA Intern Med. 2013 Nov 25;173(21):1970–1978.
  • Kavanagh KT. Control of MSSA and MRSA in the United States: protocols, policies, risk adjustment and excuses. Antimicrob Resist Infect Control. 2019;8:103.
  • Vanhommerig E, Moons P, Pirici D, et al. Comparison of biofilm formation between major clonal lineages of methicillin resistant staphylococcus aureus. PLoS One. 2014;9(8):e104561.
  • Epstein L, Mu Y, Belflower R, et al. Risk factors for invasive methicillin-resistant staphylococcus aureus infection after recent discharge from an acute-care hospitalization, 2011-2013. Clin Infect Dis. 2016 Jan 1;62(1):45–52.
  • Dukic VM, Lauderdale DS, Wilder J, et al. Epidemics of community-associated methicillin-resistant staphylococcus aureus in the United States: a meta-analysis. PLoS One. 2013;8(1):e52722.
  • Kluytmans-Vandenbergh MF, Kluytmans JA. Community-acquired methicillin-resistant staphylococcus aureus: current perspectives. Clin Microbiol Infect. 2006 Mar;12(Suppl 1):9–15.
  • Nichol KA, Adam HJ, Roscoe DL, et al. Canadian antimicrobial resistance A, CHANGING epidemiology of methicillin-resistant staphylococcus aureus in Canada. J Antimicrob Chemother. 2013 May;68(Suppl 1):i47–55.
  • Kock R, Becker K, Cookson B, et al. Methicillin-resistant staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 2010 Oct 14;15(41):19688.
  • Moscoso M, Garcia P, Cabral MP, et al. A D-Alanine auxotrophic live vaccine is effective against lethal infection caused by staphylococcus aureus. Virulence. 2018 Jan 1;9(1):604–620.
  • Jappe U, Heuck D, Strommenger B, et al. Staphylococcus aureus in dermatology outpatients with special emphasis on community-associated methicillin-resistant strains. J Invest Dermatol. 2008 Nov;128(11):2655–2664.
  • Thibaut S, Caillon J, Huart C, et al. Microbiology laboratories of the Pays de la Loire R, Susceptibility to the main antibiotics of escherichia coli and staphylococcus aureus strains identified in community acquired infections in France (MedQual, 2004-2007). Med Mal Infect. 2010 Feb;40(2):74–80.
  • Aiello AE, Lowy FD, Wright LN, et al. Meticillin-resistant staphylococcus aureus among US prisoners and military personnel: review and recommendations for future studies. Lancet Infect Dis. 2006 Jun;6(6):335–341.
  • David MZ, Daum RS. Community-associated methicillin-resistant staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010 Jul;23(3):616–687.
  • van Rijen MM, Van Keulen PH, Kluytmans JA. Increase in a dutch hospital of methicillin-resistant staphylococcus aureus related to animal farming. Clin Infect Dis. 2008 Jan 15;46(2):261–263.
  • David MZ, Dryden M, Gottlieb T, et al. Recently approved antibacterials for methicillin-resistant staphylococcus aureus (MRSA) and other Gram-positive pathogens: the shock of the new. Int J Antimicrob Agents. 2017 Sep;50(3):303–307.
  • Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011 Feb 1;52(3):285–292.
  • Dryden M, Andrasevic AT, Bassetti M, et al. A European survey of antibiotic management of methicillin-resistant staphylococcus aureus infection: current clinical opinion and practice. Clin Microbiol Infect. 2010 Mar;16(Suppl 1):3–30.
  • Brink AJ. Does resistance in severe infections caused by methicillin-resistant staphylococcus aureus give you the ‘creeps’? Curr Opin Crit Care. 2012 Oct;18(5):451–459.
  • Forest Laboratories, Inc. Telfaro (ceftaroline fosamil). Package information. 2013 [cited 2019 Jun 22]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/200327s000lbl.pdf
  • AVIR Pharma Inc. ZEVTERA (ceftobiprole medocaril) –product monograph. 2017 [cited 2019 Jun 22]. Available from: https://pdf.hres.ca/dpd_pm/00041903.PDF
  • Food and Drug Administration. SIVEXTRO® safely and effectively. 2019 [cited 2019 June 22]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/205436s005lbl.pdf
  • European Medicines Agency. Xerava (Eravacycline): summary of product characteristics. 2018 [cited 2019 Jun 06]. Available from: https://www.ema.europa.eu/en/documents/product-information/xerava-epar-product-information_en.pdf
  • ClinicalTrials.gov. Oral omadacycline vs. oral nitrofurantoin for the treatment of cystitis, 2018 [cited 2019 Jun 21] Available from: https://clinicaltrials.gov/ct2/show/NCT03425396
  • Blumenthal KG, Kuhlen JL Jr., Weil AA, et al. Adverse drug reactions associated with ceftaroline use: a 2-center retrospective cohort. J Allergy Clin Immunol Pract. 2016 Jul-Aug;4(4):740–746.
  • Scott LJ. Eravacycline: a review in complicated intra-abdominal infections. Drugs. 2019 Feb;79(3):315–324.
  • Food and Drug Administration. NUZYRA (omadacycline). [cited 2019 Jun 23]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209816_209817lbl.pdf
  • Montravers P, Tran-Dinh A, Tanaka S. The role of omadacycline in skin and soft tissue infections. Curr Opin Infect Dis. 2018 Apr;31(2):148–154.
  • Food and Drug Administration. Dalvance (dalbavancin).2016 [cited 2019 Jun 22]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021883s003lbl.pdf
  • Food and Drug Administration. Label for VIBATIV. 2009 [cited 2019 Jun 23]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022110s000lbl.pdf
  • Food and Drug Administration. VIBATIV (telavancin) for Injection, 250 mg and 750 mg vials. 2016 [cited 2019 Jun 23]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2016/022110Orig1s012ltr.pdf
  • European Medicines Agency. Orbactiv, INN-oritavancin. 2015 [cited 2019 Jun 23]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/orbactiv-epar-public-assessment-report_en.pdf
  • Food and Drug Administration. BAXDELA (delafloxacin) label 2017[cited 2019 Jun 23]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208610s000,208611s000lbl.pdf
  • Bradley JS, Puttagunta S, Rubino CM, et al. Pharmacokinetics, safety and tolerability of single dose dalbavancin in children 12-17 years of age. Pediatr Infect Dis J. 2015 Jul;34(7):748–752.
  • Gonzalez D, Bradley JS, Blumer J, et al. Dalbavancin pharmacokinetics and safety in children 3 months to 11 years of age. Pediatr Infect Dis J. 2017 Jul;36(7):645–653.
  • Bassetti M, Trecarichi EM, Mesini A, et al. Risk factors and mortality of healthcare-associated and community-acquired staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2012 Sep; 18(9):862–869.
  • Eckmann C, Dryden M, Montravers P, et al. Antimicrobial treatment of “complicated” intra-abdominal infections and the new IDSA guidelines? a commentary and an alternative European approach according to clinical definitions. Eur J Med Res. 2011 Mar 28;16(3):115–126.
  • Wu H, Harder C, Culley C. Clinical the 2016 practice guidelines for management of hospital-acquired and ventilator-associated pneumonia. Can J Hosp Pharm. 2017 May-Jun; 70(3):251–252.
  • Darley ES, MacGowan AP. Antibiotic treatment of gram-positive bone and joint infections. J Antimicrob Chemother. 2004 Jun;53(6):928–935.
  • Osmon DR, Berbari EF, Berendt AR, et al. Infectious diseases society of A, diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2013 Jan; 56(1):e1–e25.
  • Urban E, Stone GG. Impact of EUCAST ceftaroline breakpoint change on the susceptibility of methicillin-resistant staphylococcus aureus isolates collected from patients with complicated skin and soft-tissue infections. Clin Microbiol Infect. 2019 Apr 10. DOI:10.1016/j.cmi.2019.03.023.
  • Saravolatz LD, Stein GE, Johnson LB. Ceftaroline: a novel cephalosporin with activity against methicillin-resistant staphylococcus aureus. Clin Infect Dis. 2011 May;52(9):1156–1163.
  • Lan SH, Chang SP, Lai CC, et al. Efficacy and safety of ceftaroline for the treatment of community-acquired pneumonia: a systemic review and meta-analysis of randomized controlled trials. J Clin Med. 2019 Jun 9;8(6). DOI:10.3390/jcm8060824.
  • Cosimi RA, Beik N, Kubiak DW, et al. Ceftaroline for severe methicillin-resistant staphylococcus aureus infections: a systematic review. Open Forum Infect Dis. 2017;4(2):ofx084. Spring.
  • Bhowmick T, Liu C, Imp B, et al. Ceftaroline as salvage therapy for complicated MRSA bacteremia: case series and analysis. Infection. 2019 Apr 6;47:629–635.
  • Canut A, Isla A, Rodriguez-Gascon A. Pharmacokinetic/pharmacodynamic analysis to evaluate ceftaroline fosamil dosing regimens for the treatment of community-acquired bacterial pneumonia and complicated skin and skin-structure infections in patients with normal and impaired renal function. Int J Antimicrob Agents. 2015 Apr;45(4):399–405.
  • Geriak M, Haddad F, Rizvi K, et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2019 May;63(5). DOI:10.1128/AAC.02483-18.
  • Bassetti M, Peghin M, Castaldo N, et al. The safety of treatment options for acute bacterial skin and skin structure infections. Expert Opin Drug Saf. 2019 Jun 13;1–16. DOI:10.1080/14740338.2019.1621288.
  • Sullivan EL, Turner RB, O’Neal HR Jr., et al. Ceftaroline-associated neutropenia: case series and literature review of incidence, risk factors, and outcomes. Open Forum Infect Dis. 2019 May;6(5):ofz168.
  • Awad SS, Rodriguez AH, Chuang YC, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis. 2014 Jul 1;59(1):51–61.
  • Liapikou A, Cilloniz C, Torres A. Ceftobiprole for the treatment of pneumonia: a European perspective. Drug Des Devel Ther. 2015;9:4565–4572.
  • Noel GJ, Bush K, Bagchi P, et al. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis. 2008 Mar 1;46(5):647–655.
  • Tattevin P, Basuino L, Bauer D, et al. Ceftobiprole is superior to vancomycin, daptomycin, and linezolid for treatment of experimental endocarditis in rabbits caused by methicillin-resistant staphylococcus aureus. Antimicrob Agents Chemother. 2010 Feb;54(2):610–613.
  • Deitchman A, de Jong D, Barbour A, et al. Ceftobiprole medocaril (BAL-5788) for the treatment of complicated skin infections. Expert Rev Anti Infect Ther. 2016;14(11):997–1006.
  • ClinicalTrials.gov. Ceftobiprole in the treatment of patients with staphylococcus aureus bacteremia. 2017 [cited 2019 Jul 2]. Available from: https://clinicaltrials.gov/ct2/show/NCT03138733
  • Rodvold KA, Nicolau DP, Lodise TP, et al. Identifying exposure targets for treatment of staphylococcal pneumonia with ceftobiprole. Antimicrob Agents Chemother. 2009 Aug;53(8):3294–3301.
  • Stucki A, Cottagnoud M, Acosta F, et al. Evaluation of ceftobiprole activity against a variety of gram-negative pathogens, including escherichia coli, haemophilus influenzae (beta-lactamase positive and beta-lactamase negative), and klebsiella pneumoniae, in a rabbit meningitis model. Antimicrob Agents Chemother. 2012 Feb;56(2):921–925.
  • Torres A, Mouton JW, Pea F. Pharmacokinetics and dosing of ceftobiprole medocaril for the treatment of hospital- and community-acquired pneumonia in different patient populations. Clin Pharmacokinet. 2016 Dec;55(12):1507–1520.
  • Zhanel GG, Lam A, Schweizer F, et al. Ceftobiprole: a review of a broad-spectrum and anti-MRSA cephalosporin. Am J Clin Dermatol. 2008;9(4):245–254.
  • Barber KE, Werth BJ, Ireland CE, et al. Potent synergy of ceftobiprole plus daptomycin against multiple strains of staphylococcus aureus with various resistance phenotypes. J Antimicrob Chemother. 2014 Nov;69(11):3006–3010.
  • Oltolini C, Castiglioni B, Tassan Din C, et al. Meticillin-resistant Staphylococcus aureus endocarditis: first report of daptomycin plus ceftobiprole combination as salvage therapy. Int J Antimicrob Agents. 2016 Jun;47(6):502–504.
  • Bassetti M, Righi E, Pecori D, et al. Delafloxacin: an improved fluoroquinolone developed through advanced molecular engineering. Future Microbiol. 2018 Aug;13:1081–1094.
  • Siala W, Mingeot-Leclercq MP, Tulkens PM, et al. Comparison of the antibiotic activities of daptomycin, vancomycin, and the investigational fluoroquinolone delafloxacin against biofilms from staphylococcus aureus clinical isolates. Antimicrob Agents Chemother. 2014 Nov;58(11):6385–6397.
  • So W, Crandon JL, Nicolau DP. Effects of urine matrix and pH on the potency of delafloxacin and ciprofloxacin against urogenic escherichia coli and klebsiella pneumoniae. J Urol. 2015 Aug;194(2):563–570.
  • ClinicalTrials.gov. Study to compare delafloxacin to moxifloxacin for the treatment of adults with community-acquired bacterial pneumonia (DEFINE-CABP). 2016 [cited 2019 Jul 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT02679573
  • Giordano PA, Pogue JM, Cammarata S. Analysis of pooled phase III efficacy data for delafloxacin in acute bacterial skin and skin structure infections. Clin Infect Dis. 2019 Apr 8;68(Supplement_3):S223–S32.
  • Chang SP, Lee HZ, Lai CC, et al. The efficacy and safety of nemonoxacin compared with levofloxacin in the treatment of community-acquired pneumonia: a systemic review and meta-analysis of randomized controlled trials. Infect Drug Resist. 2019;12:433–438.
  • ClinicalTrials.gov. Safety and efficacy study of TG-873870 (Nemonoxacin) in diabetic foot infections. 2008 [cited 2019 Jul 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT00685698
  • Zhao C, Lv Y, Li X, et al. Effects of nemonoxacin on thorough ECG QT/QTc interval: a randomized, placebo- and positive-controlled crossover study in healthy chinese adults. Clin Ther. 2018 Jun;40(6):983–992.
  • van Rensburg DJ, Perng RP, Mitha IH, et al. Efficacy and safety of nemonoxacin versus levofloxacin for community-acquired pneumonia. Antimicrob Agents Chemother. 2010 Oct;54(10):4098–4106.
  • Poole RM. Nemonoxacin: first global approval. Drugs. 2014 Aug;74(12):1445–1453.
  • Mohamed NM, Zakaria AS, Edward EA, et al. In vitro and in vivo activity of zabofloxacin and other fluoroquinolones against MRSA isolates from a university hospital in Egypt. Pol J Microbiol. 2019;68(1):59–69.
  • Rhee CK, Chang JH, Choi EG, et al. Zabofloxacin versus moxifloxacin in patients with COPD exacerbation: a multicenter, double-blind, double-dummy, randomized, controlled, Phase III, non-inferiority trial. Int J Chron Obstruct Pulmon Dis. 2015;10:2265–2275.
  • Davenport JM, Covington P, Gotfried M, et al. Summary of pharmacokinetics and tissue distribution of a broad-spectrum fluoroquinolone, JNJ-Q2. Clin Pharmacol Drug Dev. 2012 Oct;1(4):121–130.
  • Jones TM, Johnson SW, DiMondi VP, et al. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Infect Drug Resist. 2016;9:119–128.
  • Higgins PG, Stubbings W, Wisplinghoff H, et al. Activity of the investigational fluoroquinolone finafloxacin against ciprofloxacin-sensitive and -resistant acinetobacter baumannii isolates. Antimicrob Agents Chemother. 2010 Apr;54(4):1613–1615.
  • Food and Drug Administration. XTORO (finafloxacin otic suspension) 0.3% for topical otic administration. [cited 2019 Jul 9]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206307s000lbl.pdf
  • Zhanel GG, Love R, Adam H, et al. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs. 2015 Feb;75(3):253–270.
  • Locke JB, Finn J, Hilgers M, et al. Structure-activity relationships of diverse oxazolidinones for linezolid-resistant staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Antimicrob Agents Chemother. 2010 Dec;54(12):5337–5343.
  • Shaw KJ, Poppe S, Schaadt R, et al. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob Agents Chemother. 2008 Dec;52(12):4442–4447.
  • Arias CA, Vallejo M, Reyes J, et al. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. J Clin Microbiol. 2008 Mar;46(3):892–896.
  • Chen KH, Huang YT, Liao CH, et al. In vitro activities of tedizolid and linezolid against gram-positive cocci associated with acute bacterial skin and skin structure infections and pneumonia. Antimicrob Agents Chemother. 2015 Oct;59(10):6262–6265.
  • Perez-Parra S, Pena-Monje A, Recio JL, et al. Comparative activity of tedizolid against clinical isolates of linezolid-resistant coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus. Enferm Infecc Microbiol Clin. 2017 May;35(5):323–324. Actividad comparativa de tedizolid frente a Staphylococcus coagulasa negativos resistentes a linezolid y Staphylococcus aureus resistentes a meticilina.
  • ClinicalTrials.gov. Tedizolid phosphate (TR-701 FA, MK-1986) vs linezolid for the treatment of nosocomial pneumonia (MK-1986-002) 2017 [cited 2019 Jun 12]. Available from: https://clinicaltrials.gov/ct2/show/NCT02019420
  • Ong V, Flanagan S, Fang E, et al. Absorption, distribution, metabolism, and excretion of the novel antibacterial prodrug tedizolid phosphate. Drug Metab Dispos. 2014 Aug;42(8):1275–1284.
  • McBride D, Krekel T, Hsueh K, et al. Pharmacokinetic drug evaluation of tedizolid for the treatment of skin infections. Expert Opin Drug Metab Toxicol. 2017 Mar;13(3):331–337.
  • Flanagan SD, Bien PA, Munoz KA, et al. Pharmacokinetics of tedizolid following oral administration: single and multiple dose, effect of food, and comparison of two solid forms of the prodrug. Pharmacotherapy. 2014 Mar;34(3):240–250.
  • Das D, Tulkens PM, Mehra P, et al. Tedizolid phosphate for the management of acute bacterial skin and skin structure infections: safety summary. Clin Infect Dis. 2014 Jan; 58(Suppl 1):S51–7.
  • ClinicalTrials.gov. Tedizolid phosphate (TR-701 FA, MK-1986) vs linezolid for the treatment of nosocomial pneumonia (MK-1986-002). 2019 [cited 2019 Jun 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT02019420
  • Shorr AF, Lodise TP, Corey GR, et al. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2015 Feb;59(2):864–871.
  • Fang E, Munoz KA, Prokocimer P. Characterization of neurologic and ophthalmologic safety of oral administration of tedizolid for up to 21 days in healthy volunteers. Am J Ther. 2017 Mar/Apr;24(2):e227–e33.
  • Flanagan S, Bartizal K, Minassian SL, et al. In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions. Antimicrob Agents Chemother. 2013 Jul;57(7):3060–3066.
  • Lawrence L, Danese P, DeVito J, et al. In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob Agents Chemother. 2008 May;52(5):1653–1662.
  • Paknikar SS, Narayana S. Newer antibacterials in therapy and clinical trials. N Am J Med Sci. 2012 Nov;4(11):537–547.
  • McCusker KP, Fujimori DG. The chemistry of peptidyltransferase center-targeted antibiotics: enzymatic resistance and approaches to countering resistance. ACS Chem Biol. 2012 Jan 20;7(1):64–72.
  • Michalska K, Karpiuk I, Krol M, et al. Recent development of potent analogues of oxazolidinone antibacterial agents. Bioorg Med Chem. 2013 Feb 1;21(3):577–591.
  • ClinicalTrials.gov. Safety and efficacy study of oxazolidinone to treat pneumonia. 2008 [cited 2019 Jun 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT00640926
  • Therapeutics M. Topical radezolid well tolerated in phase 1 study for treatment of acne. 2017 [cited 2019 Jun 14]. Available at: https://melinta.com/melinta-therapeutics-topical-radezolid-well-tolerated-phase-1-study-treatment-acne/
  • Ramdeen S, HW B. Dalbavancin for the treatment of acute bacterial skin and skin structure infections. Expert Opin Pharmacother. 2015;16(13):2073–2081.
  • Cercenado E. Antimicrobial spectrum of dalbavancin. Mechanism of action and in vitro activity against Gram-positive microorganisms. Enferm Infecc Microbiol Clin. 2017 Jan;35(Suppl 1):9–14.
  • Dorr MB, Jabes D, Cavaleri M, et al. Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide. J Antimicrob Chemother. 2005 Mar;55(Suppl 2):ii25–30.
  • Bassetti M, Peghin M, Carnelutti A, et al. The role of dalbavancin in skin and soft tissue infections. Curr Opin Infect Dis. 2018 Apr;31(2):141–147.
  • Dunne MW, Puttagunta S, Sprenger CR, et al. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob Agents Chemother. 2015 Apr;59(4):1849–1855.
  • Dunne Michael RU, Puttagunta sailaja intrapulmonary and plasma concentrations of dalbavancin in healthy adults after a single 1500 mg infusion. Presented at the 26th European Congress of Clinical microbiology and Infectious Diseases (ECCMID). Amsterdam, Netherlands; 2016.
  • Marbury T, Dowell JA, Seltzer E, et al. Pharmacokinetics of dalbavancin in patients with renal or hepatic impairment. J Clin Pharmacol. 2009 Apr;49(4):465–476.
  • Boucher HW, Wilcox M, Talbot GH, et al. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med. 2014 Jun 5;370(23):2169–2179.
  • Durata Therapeutics D DalvanceTM full prescribing information. Available at: DalvanceTM full prescribing information. Accessed 2019 Aug 29
  • Raad I, Darouiche R, Vazquez J, et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis. 2005 Feb 1;40(3):374–380.
  • ClinicalTrials.gov. Study on the safety and efficacy of dalbavancin versus active comparator in adult participants with osteomyelitis. 2016 cited 2019 Jul 09 Available from: https://clinicaltrials.gov/ct2/show/NCT02685033
  • Rappo U, Puttagunta S, Shevchenko V, et al. Dalbavancin for the treatment of osteomyelitis in adult patients: a randomized clinical trial of efficacy and safety. Open Forum Infect Dis. 2019 Jan; 6(1):ofy331.
  • ClinicalTrials.gov. Efficacy and safety of dalbavancin compared to standard of care antibiotic therapy for the completion of treatment of patients with complicated bacteremia or infective endocarditis. 2017 [cited 2019 Jul 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT03148756
  • Bouza E, Valerio M, Soriano A, et al. Dalbavancin in the treatment of different gram-positive infections: a real-life experience. Int J Antimicrob Agents. 2018 Apr; 51(4):571–577.
  • Tobudic S, Forstner C, Burgmann H, et al. Dalbavancin as primary and sequential treatment for gram-positive infective endocarditis: 2-year experience at the general hospital of vienna. Clin Infect Dis. 2018 Aug 16;67(5):795–798.
  • Mendes RE, Farrell DJ, Sader HS, et al. Oritavancin microbiologic features and activity results from the surveillance program in the United States. Clin Infect Dis. 2012 Apr;54(Suppl 3):S203–13.
  • Saravolatz LD, Stein GE. Oritavancin: a long-half-life lipoglycopeptide. Clin Infect Dis. 2015 Aug 15;61(4):627–632.
  • Belley A, Neesham-Grenon E, McKay G, et al. Oritavancin kills stationary-phase and biofilm staphylococcus aureus cells in vitro. Antimicrob Agents Chemother. 2009 Mar;53(3):918–925.
  • Corey GR, Kabler H, Mehra P, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014 Jun 5;370(23):2180–2190.
  • Corey GR, Good S, Jiang H, et al. Single-dose oritavancin versus 7-10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study. Clin Infect Dis. 2015 Jan 15;60(2):254–262.
  • Stewart CL, Turner MS, Frens JJ, et al. Real-world experience with oritavancin therapy in invasive gram-positive infections. Infect Dis Ther. 2017 Jun;6(2):277–289.
  • Chastain DB, Davis A. Treatment of chronic osteomyelitis with multidose oritavancin: A case series and literature review. Int J Antimicrob Agents. 2019 Apr;53(4):429–434.
  • Das B, Sarkar C, Das D, et al. Telavancin: a novel semisynthetic lipoglycopeptide agent to counter the challenge of resistant Gram-positive pathogens. Ther Adv Infect Dis. 2017 Mar;4(2):49–73.
  • Lunde CS, Hartouni SR, Janc JW, et al. Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother. 2009 Aug;53(8):3375–3383.
  • Rybak JM, Barber KE, Rybak MJ. Current and prospective treatments for multidrug-resistant gram-positive infections. Expert Opin Pharmacother. 2013 Oct;14(14):1919–1932.
  • Rubinstein E, Lalani T, Corey GR, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011 Jan 1;52(1):31–40.
  • Van Bambeke F. Lipoglycopeptide antibacterial agents in gram-positive infections: a comparative review. Drugs. 2015 Dec;75(18):2073–2095.
  • Stryjewski ME, Graham DR, Wilson SE, et al. Assessment of telavancin in complicated S, skin-structure infections S, telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis. 2008 Jun 1;46(11):1683–1693.
  • Corey GR, Rubinstein E, Stryjewski ME, et al. Potential role for telavancin in bacteremic infections due to gram-positive pathogens: focus on staphylococcus aureus. Clin Infect Dis. 2015 Mar 1;60(5):787–796.
  • Saravolatz LD, Cleveland KO, Rikabi K, et al. Real-world use of telavancin in the treatment of osteomyelitis. Diagn Microbiol Infect Dis. 2019 May 28. DOI:10.1016/j.diagmicrobio.2019.05.011.
  • Stryjewski ME, Lentnek A, O’Riordan W, et al. A randomized phase 2 trial of telavancin versus standard therapy in patients with uncomplicated staphylococcus aureus bacteremia: the ASSURE study. BMC Infect Dis. 2014 May 23;14:289.
  • ClinicalTrials.gov. A phase 3 telavancin staphylococcus aureus (S. Aureus) bacteremia trial. 2014 [cited 2019 Jul 09]. Available from: https://clinicaltrials.gov/ct2/show/NCT02208063
  • Zhao C, Wang X, Zhang Y, et al. In vitro activities of Eravacycline against 336 isolates collected from 2012 to 2016 from 11 teaching hospitals in China. BMC Infect Dis. 2019 Jun 10;19(1):508. .
  • Lan SH, Chang SP, Lai CC, et al. The efficacy and safety of eravacycline in the treatment of complicated intra-abdominal infections: a systemic review and meta-analysis of randomized controlled trials. J Clin Med. 2019;8(6). DOI:10.3390/jcm8060866.
  • ClinicalTrials.gov. Efficacy and safety study of eravacycline compared with ertapenem in participants with complicated urinary tract infections (IGNITE3). 2017 [cited 2019 Jul 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03032510
  • Connors KP, Housman ST, Pope JS, et al. open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother. 2014;58(4):2113–2118.
  • Grossman TH, Murphy TM, Slee AM, et al. Eravacycline (TP-434) is efficacious in animal models of infection. Antimicrob Agents Chemother. 2015 May;59(5):2567–2571.
  • Overcash JS, Bhiwandi P, Garrity-Ryan L, et al. Pharmacokinetics, safety, and clinical outcomes of omadacycline in women with cystitis: results from a phase 1b study. Antimicrob Agents Chemother. 2019 May;63(5). DOI:10.1128/AAC.02083-18.
  • ClinicalTrials.gov. IV or IV/PO omadacycline vs. IV/PO levofloxacin for the treatment of acute pyelonephritis. 2018 [cited 2019 Jun 07]. Available from: https://clinicaltrials.gov/ct2/show/NCT03757234
  • O’Riordan W, Green S, Overcash JS, et al. Omadacycline for acute bacterial skin and skin-structure infections. N Engl J Med. 2019 Feb 7;380(6):528–538.
  • Stets R, Popescu M, Gonong JR, et al. Omadacycline for community-acquired bacterial pneumonia. N Engl J Med. 2019 Feb 7;380(6):517–527.
  • Jaffa RK, Pillinger KE, Roshdy D, et al. Novel developments in the treatment of acute bacterial skin and skin structure infections. Expert Opin Pharmacother. 2019 May 30;1–10. DOI:10.1080/14656566.2019.1617851.
  • Sun H, Ting L, Machineni S, et al. Randomized, open-label study of the pharmacokinetics and safety of oral and intravenous administration of omadacycline to healthy subjects. Antimicrob Agents Chemother. 2016 Dec;60(12):7431–7435.
  • Noviello S, Huang DB, Corey GR. Iclaprim: a differentiated option for the treatment of skin and skin structure infections. Expert Rev Anti Infect Ther. 2018 Nov;16(11):793–803.
  • Laue H, Valensise T, Seguin A, et al. In vitro bactericidal activity of iclaprim in human plasma. Antimicrob Agents Chemother. 2009 Oct;53(10):4542–4544.
  • Huang DB, File TM Jr., Dryden M, et al. Surveillance of iclaprim activity: in vitro susceptibility of gram-positive pathogens collected from 2012 to 2014 from the United States, Asia Pacific, Latin American and Europe. Diagn Microbiol Infect Dis. 2018 Apr;90(4):329–334.
  • Oefner C, Bandera M, Haldimann A, et al. Increased hydrophobic interactions of iclaprim with staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. J Antimicrob Chemother. 2009 Apr;63(4):687–698.
  • Huang DB, O’Riordan W, Overcash JS, et al. A phase 3, randomized, double-blind, multicenter study to evaluate the safety and efficacy of intravenous iclaprim vs vancomycin for the treatment of acute bacterial skin and skin structure infections suspected or confirmed to be due to gram-positive pathogens: REVIVE-1. Clin Infect Dis. 2018 Apr 3;66(8):1222–1229.
  • Holland TL, O’Riordan W, McManus A, et al. A Phase 3, Randomized, Double-Blind, Multicenter Study To Evaluate the Safety and Efficacy of Intravenous Iclaprim versus Vancomycin for Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed To Be Due to Gram-Positive Pathogens (REVIVE-2 Study). Antimicrob Agents Chemother. 2018 May;62(5). DOI:10.1128/AAC.02580-17.
  • Huang DB, File TM Jr., Torres A, et al. A phase II randomized, double-blind, multicenter study to evaluate efficacy and safety of intravenous iclaprim versus vancomycin for the treatment of nosocomial pneumonia suspected or confirmed to be due to gram-positive pathogens. Clin Ther. 2017 Aug;39(8):1706–1718.
  • Veve MP, Wagner JL. Lefamulin: review of a promising novel pleuromutilin antibiotic. Pharmacotherapy. 2018 Sep;38(9):935–946.
  • Paukner S, Gelone SP, Arends SJR, et al. Antibacterial activity of lefamulin against pathogens most commonly causing community-acquired bacterial pneumonia: SENTRY antimicrobial surveillance program (2015-2016). Antimicrob Agents Chemother. 2019 Apr;63(4). DOI:10.1128/AAC.02161-18.
  • Zhang L, Wicha WW, Bhavnani SM, et al. Prediction of lefamulin epithelial lining fluid penetration after intravenous and oral administration using phase 1 data and population pharmacokinetics methods. J Antimicrob Chemother. 2019 Apr 1;74(Supplement_3):iii27–iii34.
  • Wicha WW, Strickmann DB, Paukner S. Pharmacokinetics/pharmacodynamics of lefamulin in a neutropenic murine pneumonia model with staphylococcus aureus and streptococcus pneumoniae. J Antimicrob Chemother. 2019 Apr 1;74(Supplement_3):iii11–iii18.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–395.
  • Choi S, Isaacs A, Clements D, et al. De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6968–6973.
  • Mensa B, Howell GL, Scott R, et al. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother. 2014 Sep;58(9):5136–5145.
  • ClinicalTrials.gov. Initial treatment for acute bacterial skin infections (ABSSSI) caused by staphylococcus aureus. 2010 [cited 2019 Jul 01]. Available from: https://clinicaltrials.gov/ct2/show/NCT01211470
  • ClinicalTrials.gov. Efficacy and safety study of brilacidin to treat serious skin infections. 2014 [cited 2019 Jul 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT02052388
  • Kowalski RP, Romanowski EG, Yates KA, et al. An independent evaluation of a novel peptide mimetic, brilacidin (PMX30063), for ocular anti-infective. J Ocul Pharmacol Ther. 2016 Jan-Feb;32(1):23–27.
  • Bax BD, Chan PF, Eggleston DS, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature. 2010 Aug 19;466(7309):935–940.
  • Biedenbach DJ, Bouchillon SK, Hackel M, et al. In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother. 2016 Jan 4;60(3):1918–1923.
  • Gibson EG, Bax B, Chan PF, et al. Mechanistic and structural basis for the actions of the antibacterial gepotidacin against staphylococcus aureus gyrase. ACS Infect Dis. 2019 Apr 12;5(4):570–581.
  • Flamm RK, Farrell DJ, Rhomberg PR, et al. Gepotidacin (GSK2140944) in vitro activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2017 Jul;61(7). DOI:10.1128/AAC.00468-17.
  • ClinicalTrials.gov. Pharmacokinetics (PK) study of gepotidacin (GSK2140944) in adult subjects with varying degrees of hepatic impairment and in matched control subjects with normal hepatic function. 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT03562117. [cited 2019 Jul 1]
  • ClinicalTrials.gov.Pharmacokinetic study of gepotidacin in subjects with varying degrees of renal impairment and in subjects with normal renal function. 2018 [cited 2019 Jul 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03562117
  • O’Riordan W, Tiffany C, Scangarella-Oman N, et al. Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2017 Jun;61(6). DOI:10.1128/AAC.02095-16.
  • ClinicalTrials.gov. Pharmacokinetic study of oral gepotidacin (GSK2140944) in subjects with uncomplicated urinary tract infection (acute cystitis). 2018 [cited 2019 Jul 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03568942
  • Bulik CC, Okusanya OO, Lakota EA, et al. Pharmacokinetic-pharmacodynamic evaluation of gepotidacin against gram-positive organisms using data from murine infection models. Antimicrob Agents Chemother. 2017 Feb;61(2). DOI:10.1128/AAC.00115-16.
  • Kaplan N, Albert M, Awrey D, et al. Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal fabi inhibitor. Antimicrob Agents Chemother. 2012 Nov;56(11):5865–5874.
  • Yao J, Carter RA, Vuagniaux G, et al. A pathogen-selective antibiotic minimizes disturbance to the microbiome. Antimicrob Agents Chemother. 2016 Jul;60(7):4264–4273.
  • Banevicius MA, Kaplan N, Hafkin B, et al. Pharmacokinetics, pharmacodynamics and efficacy of novel FabI inhibitor AFN-1252 against MSSA and MRSA in the murine thigh infection model. J Chemother. 2013 Feb;25(1):26–31.
  • Hafkin B, Kaplan N, Murphy B. Efficacy and safety of AFN-1252, the first staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob Agents Chemother. 2015 Dec 28;60(3):1695–1701.
  • ClinicalTrials.gov. Study to assess safety, tolerability and efficacy of afabicin in the treatment of participants with bone or joint infection due to staphylococcus. 2018. [cited 2019 Jul 01]. Available from: https://clinicaltrials.gov/ct2/show/NCT03723551
  • Shaeer KM, Zmarlicka MT, Chahine EB, et al. Plazomicin: a next-generation aminoglycoside. Pharmacotherapy. 2019 Jan;39(1):77–93.
  • Armstrong ES, Miller GH. Combating evolution with intelligent design: the neoglycoside ACHN-490. Curr Opin Microbiol. 2010 Oct;13(5):565–573.
  • Achaogen Inc. Zemdri (plazomicin) for injection package insert. 2018 [cited 2019 Jun 12]. Available from: https://zemdri.com/
  • McKinnell JA, Dwyer JP, Talbot GH, et al. Plazomicin for infections caused by carbapenem-resistant enterobacteriaceae. N Engl J Med. 2019 Feb 21;380(8):791–793.
  • Lopez Diaz MC, Rios E, Rodriguez-Avial I, et al. In-vitro activity of several antimicrobial agents against methicillin-resistant staphylococcus aureus (MRSA) isolates expressing aminoglycoside-modifying enzymes: potency of plazomicin alone and in combination with other agents. Int J Antimicrob Agents. 2017 Aug;50(2):191–196.
  • FDA Briefing Document. Plazomicin sulfate injection meeting of the antimicrobial drugs advisory committee (AMDAC) 2018. [cited 2019 Jun 22]. Available from: https://www.fda.gov/media/113161/download.
  • Abdul-Mutakabbir JC, Kebriaei R, Jorgensen SCJ, et al. Teaching an old class new tricks: a novel semi-synthetic aminoglycoside, plazomicin. Infect Dis Ther. 2019 Jun;8(2):155–170.
  • Putnam SD, Sader HS, Farrell DJ, et al. Antimicrobial characterisation of solithromycin (CEM-101), a novel fluoroketolide: activity against staphylococci and enterococci. Int J Antimicrob Agents. 2011 Jan;37(1):39–45.
  • Jamieson BD, Ciric S, Fernandes P. Safety and pharmacokinetics of solithromycin in subjects with hepatic impairment. Antimicrob Agents Chemother. 2015 Aug;59(8):4379–4386.
  • Rodvold KA, Gotfried MH, Still JG, et al. Comparison of plasma, epithelial lining fluid, and alveolar macrophage concentrations of solithromycin (CEM-101) in healthy adult subjects. Antimicrob Agents Chemother. 2012 Oct;56(10):5076–5081.
  • Oldach D, Clark K, Schranz J, et al. Randomized, double-blind, multicenter phase 2 study comparing the efficacy and safety of oral solithromycin (CEM-101) to those of oral levofloxacin in the treatment of patients with community-acquired bacterial pneumonia. Antimicrob Agents Chemother. 2013 Jun;57(6):2526–2534.
  • Buege MJ, Brown JE, Aitken SL. Solithromycin: a novel ketolide antibiotic. Am J Health Syst Pharm. 2017 Jun 15;74(12):875–887.
  • Wen J, Chen F, Zhao M, et al. Solithromycin monotherapy for treatment of community-acquired bacterial pneumonia: a meta-analysis of randomised controlled trials. Int J Clin Pract. 2019 May; 73(5):e13333.
  • Theurapeutics M. Cempra receives complete response letter from FDA for solithromycin NDAs. 2016 [cited 2019 Jun 17]. Available from: http://ir.melinta.com/news-releases/news-release-details/cempra-receives-complete-response-letter-fda-solithromycin-ndas
  • Fattom AI, Sarwar J, Ortiz A, et al. A staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun. 1996 May;64(5):1659–1665.
  • Parker D. A live vaccine to staphylococcus aureus infection. Virulence. 2018 Dec 31;9(1):700–702.
  • Jain R, Kralovic SM, Evans ME, et al. Veterans affairs initiative to prevent methicillin-resistant staphylococcus aureus infections. N Engl J Med. 2011 Apr 14;364(15):1419–1430.
  • Robicsek A, Beaumont JL, Thomson RB Jr., et al. Topical therapy for methicillin-resistant staphylococcus aureus colonization: impact on infection risk. Infect Control Hosp Epidemiol. 2009 Jul;30(7):623–632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.