758
Views
18
CrossRef citations to date
0
Altmetric
Review

State-of-the-art treatment strategies for nontuberculous mycobacteria infections

, &
Pages 969-981 | Received 02 Dec 2019, Accepted 05 Mar 2020, Published online: 21 Mar 2020

References

  • Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis. 1979 Jan;119(1):107–159.
  • Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007 Feb 15;175(4):367–416.
  • D’Antonio S, Rogliani P, Paone G, et al. An unusual outbreak of nontuberculous mycobacteria in hospital respiratory wards: association with nontuberculous mycobacterial colonization of hospital water supply network. Int J Mycobacteriol. 2016 June;5(2):244–247.
  • Green DA, Whittier S, Greendyke W, et al. Outbreak of rapidly growing nontuberculous mycobacteria among patients undergoing cosmetic surgery in the dominican republic. Ann Plast Surg. 2017 Jan;78(1):17–21.
  • Griffith DE. Emergence of nontuberculous mycobacteria as pathogens in cystic fibrosis. Am J Respir Crit Care Med. 2003 Mar 15;167(6):810–812.
  • Esteban J, Fernandez Roblas R, Garcia Cia JI, et al. Clinical significance and epidemiology of non-pigmented rapidly growing mycobacteria in a university hospital. J Infect. 2007 Feb;54(2):135–145.
  • Larcher R, Lounnas M, Dumont Y, et al. Mycobacterium chimaera pulmonary disease in cystic fibrosis patients, France, 2010–2017. Emerg Infect Dis. 2019 Mar;25(3):611–613.
  • Bryant JM, Grogono DM, Rodriguez-Rincon D, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016 Nov 11;354(6313):751–757.
  • Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev. 2014 Oct;27(4):727–752.
  • Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003 Apr;16(2):319–354.
  • Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel Genera. Front Microbiol. 2018;9:67.
  • Tortoli E, Brown-Elliott BA, Chalmers JD, et al. Same meat, different gravy: ignore the new names of mycobacteria. Eur Respir J. 2019 July;54(1):1900795.
  • Martinez Gonzalez S, Cano Cortes A, Sota Yoldi LA, et al. Non-tuberculous mycobacteria. an emerging threat? Arch Bronconeumol. 2017 Oct;53(10):554–560.
  • Rindi L, Garzelli C. Increase in non-tuberculous mycobacteria isolated from humans in Tuscany, Italy, from 2004 to 2014. BMC Infect Dis. 2016 Feb 1;16(1):44.
  • Falkinham JO 3rd. Current epidemiologic trends of the nontuberculous mycobacteria (NTM). Curr Environ Health Rep. 2016June3;3(2):161–167.
  • van der Werf MJ, Kodmon C, Katalinic-Jankovic V, et al. Inventory study of non-tuberculous mycobacteria in the European Union. BMC Infect Dis. 2014 Feb;6(14):62.
  • Hoefsloot W, van Ingen J, Andrejak C, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013 Dec;42(6):1604–1613.
  • Martin-Casabona N, Bahrmand AR, Bennedsen J, et al. Non-tuberculous mycobacteria: patterns of isolation. A multi-country retrospective survey. Int J Tuberc Lung Dis. 2004 Oct;8(10):1186–1193.
  • Ringshausen FC, Apel RM, Bange FC, et al. Burden and trends of hospitalisations associated with pulmonary non-tuberculous mycobacterial infections in Germany, 2005–2011. BMC Infect Dis. 2013 May 21;13(1):231.
  • Russell CD, Claxton P, Doig C, et al. Non-tuberculous mycobacteria: a retrospective review of Scottish isolates from 2000 to 2010. Thorax. 2014 June;69(6):593–595.
  • Santin M, Barrabeig I, Malchair P, et al. Pulmonary infections with nontuberculous mycobacteria, Catalonia, Spain, 1994–2014. Emerg Infect Dis. 2018 June;24(6):1091–1094.
  • Burns DN, Wallace RJ Jr., Schultz ME, et al. Nosocomial outbreak of respiratory tract colonization with Mycobacterium fortuitum: demonstration of the usefulness of pulsed-field gel electrophoresis in an epidemiologic investigation. Am Rev Respir Dis. 1991 Nov;144(5):1153–1159.
  • Buser GL, Laidler MR, Cassidy PM, et al. Outbreak of nontuberculous mycobacteria joint prosthesis infections, Oregon, USA, 2010–2016. Emerg Infect Dis. 2019 May;25(5):849–855.
  • Carbonne A, Brossier F, Arnaud I, et al. Outbreak of nontuberculous mycobacterial subcutaneous infections related to multiple mesotherapy injections. J Clin Microbiol. 2009 June;47(6):1961–1964.
  • Griffin I, Schmitz A, Oliver C, et al. Outbreak of tattoo-associated nontuberculous mycobacterial skin infections. Clin Infect Dis. 2019 Aug 30;69(6):949–955.
  • Lillis JV, Ansdell D. Outbreak of nontuberculous mycobacterial disease in the central Pacific. Dermatol Clin. 2011 Jan;29(1):9–13.
  • Nolan CM, Hashisaki PA, Dundas DF. An outbreak of soft-tissue infections due to Mycobacterium fortuitum associated with electromyography. J Infect Dis. 1991 May;163(5):1150–1153.
  • Quinones C, Ramalle-Gomara E, Perucha M, et al. An outbreak of Mycobacterium fortuitum cutaneous infection associated with mesotherapy. J Eur Acad Dermatol Venereol. 2010 May;24(5):604–606.
  • Tagashira Y, Kozai Y, Yamasa H, et al. A cluster of central line-associated bloodstream infections due to rapidly growing nontuberculous mycobacteria in patients with hematologic disorders at a Japanese tertiary care center: an outbreak investigation and review of the literature. Infect Control Hosp Epidemiol. 2015 Jan;36(1):76–80.
  • Yamada T, Ushijima K, Uemura O. A hospital-acquired outbreak of catheter-related nontuberculous mycobacterial infection in children on peritoneal dialysis. CEN Case Rep. 2015 May;4(1):43–47.
  • Hasan NA, Epperson LE, Lawsin A, et al. Genomic analysis of cardiac surgery-associated mycobacterium chimaera infections, United States. Emerg Infect Dis. 2019 Mar;25(3):559–563.
  • Kohler P, Kuster SP, Bloemberg G, et al. Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery. Eur Heart J. 2015 Oct 21;36(40):2745–2753.
  • Diekema DJ. Mycobacterium chimaera infections after cardiovascular surgery: lessons from a global outbreak. Trans Am Clin Climatol Assoc. 2019;130:136–144.
  • Sommerstein R, Kohler PP, Hasse B. Global Mycobacterium chimaera outbreak: challenges for the near future. J Hosp Infect. 2017 July;96(3):207–208.
  • Marra AR, Diekema DJ, Edmond MB. Mycobacterium chimaera infections associated with contaminated heater-cooler devices for cardiac surgery: outbreak management. Clin Infect Dis. 2017 Aug 15;65(4):669–674.
  • Sommerstein R, Schreiber PW, Diekema DJ, et al. Mycobacterium chimaera outbreak associated with heater-cooler devices: piecing the puzzle together. Infect Control Hosp Epidemiol. 2017 Jan;38(1):103–108.
  • Sax H, Bloemberg G, Hasse B, et al. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015 July 1;61(1):67–75.
  • Kasperbauer SH, Daley CL. Mycobacterium chimaera infections related to the heater-cooler unit outbreak: a guide to diagnosis and management. Clin Infect Dis. 2019 Mar 19; 68(7):1244–1250.
  • Park J, Cho J, Lee CH, et al. Progression and treatment outcomes of lung disease caused by Mycobacterium abscessus and Mycobacterium massiliense. Clin Infect Dis. 2017 Feb 1;64(3):301–308.
  • Koh WJ, Jeong BH, Kim SY, et al. Mycobacterial characteristics and treatment outcomes in mycobacterium abscessus lung disease. Clin Infect Dis. 2017 Feb 1;64(3):309–316.
  • Leung JM, Olivier KN. Nontuberculous mycobacteria: the changing epidemiology and treatment challenges in cystic fibrosis. Curr Opin Pulm Med. 2013 Nov;19(6):662–669.
  • Qvist T, Eickhardt S, Kragh KN, et al. Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur Respir J. 2015 Dec;46(6):1823–1826.
  • Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013 May 4;381(9877):1551–1560.
  • Esteban J, Martin-de-Hijas NZ, Fernandez AI, et al. Epidemiology of infections due to nonpigmented rapidly growing mycobacteria diagnosed in an urban area. Eur J Clin Microbiol Infect Dis. 2008 Oct;27(10):951–957.
  • Harris KA, Underwood A, Kenna DT, et al. Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of Mycobacterium abscessus in a cohort of pediatric cystic fibrosis patients. Clin Infect Dis. 2015 Apr 1;60(7):1007–1016.
  • Shaw LP, Doyle RM, Kavaliunaite E, et al. Children with cystic fibrosis are infected with multiple subpopulations of mycobacterium abscessus with different antimicrobial resistance profiles. Clin Infect Dis. 2019 Oct 30;69(10):1678–1686.
  • Garcia-Pedrazuela M, Frutos JM, Munoz-Egea MC, et al. Polyclonality among clinical strains of non-pigmented rapidly growing mycobacteria: phenotypic and genotypic differences and their potential implications. Clin Microbiol Infect. 2015 Apr;21(4):348e1–4.
  • Tai AYC, Athan E, Friedman ND, et al. Increased severity and spread of Mycobacterium ulcerans, Southeastern Australia. Emerg Infect Dis. 2018 Jan;24(1):58.
  • Singh A, McBride WJH, Govan B, et al. Potential animal reservoir of Mycobacterium ulcerans: a systematic review. Trop Med Infect Dis. 2018 May 30;3(2):56.
  • O’Brien DP, Jeanne I, Blasdell K, et al. The changing epidemiology worldwide of Mycobacterium ulcerans. Epidemiol Infect. 2018 Oct;8:1–8.
  • Tortoli E. Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol Infect. 2009 Oct;15(10):906–910.
  • Brown-Elliott BA, Woods GL. Antimycobacterial susceptibility testing of nontuberculous mycobacteria. J Clin Microbiol. 2019 Oct;57(10):e00834–19.
  • Haworth CS, Banks J, Capstick T, et al. British thoracic society guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir Res. 2017;4(1):e000242.
  • Wallace RJ Jr., Brown-Elliott BA, McNulty S, et al. Macrolide/Azalide therapy for nodular/bronchiectatic Mycobacterium avium complex lung disease. Chest. 2014 Aug;146(2):276–282.
  • Jeong BH, Jeon K, Park HY, et al. Intermittent antibiotic therapy for nodular bronchiectatic mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2015 Jan 1;191(1):96–103.
  • Lam PK, Griffith DE, Aksamit TR, et al. Factors related to response to intermittent treatment of mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006 June 1;173(11):1283–1289.
  • Wallace RJ Jr., Dunbar D, Brown BA, et al. Rifampin-resistant Mycobacterium kansasii. Clin Infect Dis. 1994 May;18(5):736–743.
  • Esteban J, Martin-de-Hijas NZ, Garcia-Almeida D, et al. Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect. 2009 Oct;15(10):919–923.
  • Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009 Apr;53(4):1367–1376.
  • Kim HY, Kim BJ, Kook Y, et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol. 2010 June;54(6):347–353.
  • Maurer FP, Ruegger V, Ritter C, et al. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). J Antimicrob Chemother. 2012 Nov;67(11):2606–2611.
  • Adelman MH, Addrizzo-Harris DJ. Management of nontuberculous mycobacterial pulmonary disease. Curr Opin Pulm Med. 2018 May;24(3):212–219.
  • Banaschewski B, Hofmann T. Inhaled antibiotics for mycobacterial lung disease. Pharmaceutics. 2019 July 19;11(7):352.
  • Rose SJ, Neville ME, Gupta R, et al. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One. 2014;9(9):e108703.
  • Griffith DE, Eagle G, Thomson R, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med. 2018 Dec 15;198(12):1559–1569.
  • Olivier KN, Griffith DE, Eagle G, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2017 Mar 15;195(6):814–823.
  • Wentworth AB, Drage LA, Wengenack NL, et al. Increased incidence of cutaneous nontuberculous mycobacterial infection, 1980 to 2009: a population-based study. Mayo Clin Proc. 2013 Jan;88(1):38–45.
  • Escalonilla P, Esteban J, Soriano ML, et al. Cutaneous manifestations of infection by nontuberculous mycobacteria. Clin Exp Dermatol. 1998 Sept;23(5):214–221.
  • Holt MR, Kasperbauer S. Management of extrapulmonary nontuberculous mycobacterial infections. Semin Respir Crit Care Med. 2018 June;39(3):399–410.
  • Winthrop KL, Albridge K, South D, et al. The clinical management and outcome of nail salon-acquired Mycobacterium fortuitum skin infection. Clin Infect Dis. 2004 Jan 1;38(1):38–44.
  • Friedman ND, Athan E, Walton AL, et al. Increasing experience with primary oral medical therapy for Mycobacterium ulcerans disease in an Australian cohort. Antimicrob Agents Chemother. 2016 May;60(5):2692–2695.
  • Sia TY, Taimur S, Blau DM, et al. Clinical and pathological evaluation of Mycobacterium marinum group skin infections associated with fish markets in New York City. Clin Infect Dis. 2016 Mar 1;62(5):590–595.
  • Jimenez-Montero B, Baquero-Artigao F, Saavedra-Lozano J, et al. Comparison of Mycobacterium lentiflavum and Mycobacterium avium-intracellulare complex lymphadenitis. Pediatr Infect Dis J. 2014 Jan;33(1):28–34.
  • Miqueleiz-Zapatero A, Santa Olalla-Peralta C, Guerrero-Torres MD, et al. Mycobacterium lentiflavum as the main cause of lymphadenitis in pediatric population. Enferm Infecc Microbiol Clin. 2018 Dec;36(10):640–643.
  • Piersimoni C, Goteri G, Nista D, et al. Mycobacterium lentiflavum as an emerging causative agent of cervical lymphadenitis. J Clin Microbiol. 2004 Aug;42(8):3894–3897.
  • Esteban J, Garcia-Pedrazuela M, Munoz-Egea MC, et al. Current treatment of nontuberculous mycobacteriosis: an update. Expert Opin Pharmacother. 2012 May;13(7):967–986.
  • El Helou G, Viola GM, Hachem R, et al. Rapidly growing mycobacterial bloodstream infections. Lancet Infect Dis. 2013 Feb;13(2):166–174.
  • El Helou G, Hachem R, Viola GM, et al. Management of rapidly growing mycobacterial bacteremia in cancer patients. Clin Infect Dis. 2013 Mar;56(6):843–846.
  • Vesenbeckh S, Schonfeld N, Krieger D, et al. Bedaquiline as a potential agent in the treatment of M. intracellulare and M. avium infections. Eur Respir J. 2017 Mar;49(3):1601969.
  • Brown-Elliott BA, Philley JV, Griffith DE, et al. In vitro susceptibility testing of bedaquiline against Mycobacterium avium complex. Antimicrob Agents Chemother. 2017 Feb;61(2):e01798–16.
  • Kim DH, Jhun BW, Moon SM, et al. In vitro activity of bedaquiline and delamanid against nontuberculous mycobacteria, including macrolide-resistant clinical isolates. Antimicrob Agents Chemother. 2019 Aug;63(8):e00665–19.
  • Philley JV, Wallace RJ Jr., Benwill JL, et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest. 2015 Aug;148(2):499–506.
  • Yu X, Gao X, Li C, et al. In Vitro activities of Bedaquiline and Delamanid against nontuberculous mycobacteria Isolated in Beijing, China. Antimicrob Agents Chemother. 2019 Aug;63(8):e00031–19.
  • Martiniano SL, Wagner BD, Levin A, et al. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest. 2017 Oct;152(4):800–809.
  • Luo J, Yu X, Jiang G, et al. In Vitro activity of Clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrob Agents Chemother. 2018 July;62(7):e00072–18.
  • Cariello PF, Kwak EJ, Abdel-Massih RC, et al. Safety and tolerability of clofazimine as salvage therapy for atypical mycobacterial infection in solid organ transplant recipients. Transpl Infect Dis. 2015 Feb;17(1):111–118.
  • Jarand J, Davis JP, Cowie RL, et al. Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including clofazimine and/or rifampin. Chest. 2016 May;149(5):1285–1293.
  • Srivastava S, Gumbo T. Clofazimine for the treatment of Mycobacterium kansasii. Antimicrob Agents Chemother. 2018 Aug;62(8).pii: e00248-18. doi: 10.1128/AAC.00248-18.
  • Singh S, Bouzinbi N, Chaturvedi V, et al. In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clin Microbiol Infect. 2014 Dec;20(12):O1124–7.
  • van Ingen J, Totten SE, Helstrom NK, et al. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012 Dec;56(12):6324–6327.
  • Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016 Feb;60(2):1097–1105.
  • Yang B, Jhun BW, Moon SM, et al. Clofazimine-containing regimen for the treatment of Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2017 June;61(6):e02052–16.
  • Floto RA, Olivier KN, Saiman L, et al. US cystic fibrosis foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016 Jan;71(Suppl 1):i1–22.
  • Converse PJ, Almeida DV, Tasneen R, et al. Shorter-course treatment for Mycobacterium ulcerans disease with high-dose rifamycins and clofazimine in a mouse model of Buruli ulcer. PLoS Negl Trop Dis. 2018 Aug;12(8):e0006728.
  • Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017 June;55(6):1747–1754.
  • Ruth MM, Koeken V, Pennings LJ, et al. Is there a role for tedizolid in the treatment of non-tuberculous mycobacterial disease? J Antimicrob Chemother. 2020 Mar 1;75(3):609–617.
  • Ferro BE, Srivastava S, Deshpande D, et al. Tigecycline is highly efficacious against Mycobacterium abscessus pulmonary disease. Antimicrob Agents Chemother. 2016 May;60(5):2895–2900.
  • Fernandez-Roblas R, Martin-de-Hijas NZ, Fernandez-Martinez AI, et al. In vitro activities of tigecycline and 10 other antimicrobials against nonpigmented rapidly growing mycobacteria. Antimicrob Agents Chemother. 2008 Nov;52(11):4184–4186.
  • Kwon YS, Levin A, Kasperbauer SH, et al. Efficacy and safety of tigecycline for Mycobacterium abscessus disease. Respir Med. 2019 Oct 8;158:89–91.
  • Chen J, Zhao L, Mao Y, et al. Clinical efficacy and adverse effects of antibiotics used to treat Mycobacterium abscessus pulmonary disease. Front Microbiol. 2019;10:1977.
  • Stets R, Popescu M, Gonong JR, et al. Omadacycline for community-acquired bacterial pneumonia. N Engl J Med. 2019 Feb 7;380(6):517–527.
  • O’Riordan W, Green S, Overcash JS, et al. Omadacycline for acute bacterial skin and skin-structure infections. N Engl J Med. 2019 Feb 7;380(6):528–538.
  • Minhas R, Sharma S, Kundu S. Utilizing the promise of omadacycline in a resistant, non-tubercular mycobacterial pulmonary infection. Cureus. 2019 July 9;11(7):e5112.
  • Shoen C, Benaroch D, Sklaney M, et al. In vitro activities of omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2019;63(5):May.
  • Gotfried MH, Horn K, Garrity-Ryan L, et al. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy adult subjects. Antimicrob Agents Chemother. 2017;61(9):Sep.
  • Solomkin J, Evans D, Slepavicius A, et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017 Mar 1;152(3):224–232.
  • Kaushik A, Ammerman NC, Martins O, et al. In vitro activity of new tetracycline analogs omadacycline and eravacycline against drug-resistant clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother. 2019 June;63(6). DOI:10.1128/AAC.00470-19
  • Edoo Z, Iannazzo L, Compain F, et al. Synthesis of avibactam derivatives and activity on beta-lactamases and peptidoglycan biosynthesis enzymes of mycobacteria. Chemistry. 2018 June 7;24(32):8081–8086.
  • Pandey R, Chen L, Manca C, et al. Dual beta-lactam combinations highly active against Mycobacterium abscessus complex in vitro. MBio. 2019 Feb 12;10(1). DOI:10.1128/mBio.02895-18.
  • Arenaz-Callao MP, Gonzalez Del Rio R, Lucia QA, et al. Triple oral beta-lactam containing therapy for Buruli ulcer treatment shortening. PLoS Negl Trop Dis. 2019 Jan;13(1):e0007126.
  • Das S, Garg T, Chopra S, et al. Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria. J Antimicrob Chemother. 2019 Feb;74:1317–1322.
  • Khosravi AD, Mirsaeidi M, Farahani A, et al. Prevalence of nontuberculous mycobacteria and high efficacy of d-cycloserine and its synergistic effect with clarithromycin against Mycobacterium fortuitum and Mycobacterium abscessus. Infect Drug Resist. 2018;11:2521–2532.
  • Ruth MM, van Rossum M, Koeken V, et al. Auranofin activity exposes thioredoxin reductase as a viable drug target in Mycobacterium abscessus. Antimicrob Agents Chemother. 2019 July 1.63:e00449–19
  • El Omari K, Hamze M, Alwan S, et al. In-vitro evaluation of the antibacterial activity of the essential oils of micromeria barbata, eucalyptus globulus and juniperus excelsa against strains of Mycobacterium tuberculosis (including MDR), Mycobacterium kansasii and Mycobacterium gordonae. J Infect Public Health. 2019 Feb 6;12(5):615–618.
  • Keumoe R, Nguembou MS, Tsouh FP, et al. Antimycobacterial activity of medicinal plants against the causative agent of buruli ulcer: Mycobacterium ulcerans. Int J Mycobacteriol. 2016 Dec;5(Suppl 1):S105.
  • Tsouh Fokou PV, Nyarko AK, Appiah-Opong R, et al. Update on medicinal plants with potency on Mycobacterium ulcerans. Biomed Res Int. 2015;2015:917086.
  • Rodriguez-Sevilla G, Crabbe A, Garcia-Coca M, et al. Antimicrobial treatment provides a competitive advantage to Mycobacterium abscessus in a dual-species biofilm with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(11):Nov.
  • Rodriguez-Sevilla G, Rigauts C, Vandeplassche E, et al. Influence of three-dimensional lung epithelial cells and interspecies interactions on antibiotic efficacy against Mycobacterium abscessus and Pseudomonas aeruginosa. Pathog Dis. 2018 June 1;76(4). DOI:10.1093/femspd/fty034
  • Rodriguez-Sevilla G, Garcia-Coca M, Romera-Garcia D, et al. Non-tuberculous mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model. Int J Med Microbiol. 2018 Apr;308(3):413–423.
  • Esteban J, Garcia-Coca M. Mycobacterium biofilms. Front Microbiol. 2017;8:2651.
  • Munoz-Egea MC, Garcia-Pedrazuela M, Esteban J. In vitro susceptibility of rapidly growing mycobacteria biofilms against different antimicrobials. Enferm Infecc Microbiol Clin. 2015 Feb;33(2):136–137.
  • Bardouniotis E, Ceri H, Olson ME. Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycobacterium marinum. Curr Microbiol. 2003 Jan;46(1):28–32.
  • Falkinham JO 3rd, Williams MD, Kwait R, et al. Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int J Mycobacteriol. 2016 June;5(2):240–243.
  • Garcia-Coca M, Rodriguez-Sevilla G, Perez-Domingo A, et al. Inhibition of Mycobacterium abscessus, M. chelonae, and M. fortuitum biofilms by Methylobacterium sp. J Antibiot (Tokyo). 2019 Sept 3;73:40–47.
  • Munoz-Egea MC, Garcia-Pedrazuela M, Mahillo-Fernandez I, et al. Effect of antibiotics and antibiofilm agents in the ultrastructure and development of biofilms developed by nonpigmented rapidly growing mycobacteria. Microb Drug Resist. 2016 Jan;22(1):1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.