2,931
Views
2
CrossRef citations to date
0
Altmetric
Perspective

Does hydroxychloroquine still have any role in the COVID-19 pandemic?

&
Pages 1257-1266 | Received 07 Dec 2020, Accepted 01 Mar 2021, Published online: 16 Mar 2021

References

  • White NJ, Watson JA, Hoglund RM, et al. COVID-19 prevention and treatment: a critical analysis of chloroquine and hydroxychloroquine clinical pharmacology. PLoS Med. 2020 Sep; 17(9):e1003252.
  • White N, Strub-Wourgraft N, Faiz A, et al. COVID-19 therapeutic reviews and guidelines should not pool evidence from uncomplicated illness in outpatients and severely ill hospitalized patients. Lancet. 2021; 396(10267):1976–1977. In Press.
  • Recovery, Horby P, Mafham M, et al. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020 Nov 19;383(21).
  • Solidarity, Pan H, Peto R, et al. Repurposed antiviral drugs for Covid-19 – interim who solidarity trial results. N Engl J Med. 2021 Feb 11; 384(6):497–511.
  • Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020 Jun; 383(6):3.
  • Mitjà O, Corbacho-Monné M, Ubals M, et al. A cluster-randomized trial of hydroxychloroquine for prevention of Covid-19. N Engl J Med. 2020 Feb 4;384:417-427
  • Abella BS, Jolkovsky EL, Biney BT, et al. Efficacy and safety of hydroxychloroquine vs placebo for pre-exposure SARS-CoV-2 prophylaxis among health care workers: a randomized clinical trial. JAMA Intern Med. 2020 Sep 30;181(2):195–202.
  • Barnabas RV, Brown ER, Bershteyn A, et al. Hydroxychloroquine as postexposure prophylaxis to prevent severe acute respiratory syndrome Coronavirus 2 infection: a randomized trial. Ann Intern Med. 2020 Dec 8; DOI:10.7326/M20-6519
  • Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann Intern Med. 2020 Jul 16; 173(8):623–631.
  • Mitja O, Corbacho-Monne M, Ubals M, et al. Hydroxychloroquine for early treatment of adults with mild Covid-19: a randomized-controlled trial. Clin Infect Dis. 2020 Jul 16;ciaa1009.
  • Rajasingham R, Bangdiwala AS, Nicol MR, et al. Hydroxychloroquine as pre-exposure prophylaxis for COVID-19 in healthcare workers: a randomized trial. Clin Infect Dis. 2020 Oct 17;ciaa1571.
  • Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Network Open. 2020 Apr 1; 3(4):e208857.
  • Lane JCE, Weaver J, Kostka K, et al. Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study. Lancet Rheumatol. 2020 Nov; 2(11):e698-e711.
  • Coatney GR. Pitfalls in a discovery: the chronicle of chloroquine . Am J Trop Med Hyg. 1963 Mar;12(2):121–128.
  • Berliner RW, Earle DP Jr., Taggart JV, et al. Studies on the chemotherapy of the human malarias; of the human malarias the physiological disposition, antimalarial activity, and toxicity of several derivatives of 4-aminoquinoline. J Clin Invest. 1948 May; 27(3 Pt1):98–107.
  • Advances in malaria chemotherapy. Report of a WHO Scientific group. World Health Organ Tech Rep Ser. 1984;711:1–218.
  • WHO. Guidelines for the treatment of malaria. Geneva 2015.
  • Villegas L, McGready R, Htway M, et al. Chloroquine prophylaxis against vivax malaria in pregnancy: a randomized, double-blind, placebo-controlled trial. Trop Med Int Health. 2007 Feb; 12(2):209–218.
  • McGready R, Lee SJ, Wiladphaingern J, et al. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis. 2012 May; 12(5):388–396.
  • McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med. 1983 Jul 18; 75(1A):11–18.
  • Rynes RI. Hydroxychloroquine treatment of rheumatoid arthritis. Am J Med. 1988 Oct 14; 85(4A):18–22.
  • Keyaerts E, Li S, Vijgen L, et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother. 2009 Aug; 53(8):3416–3421.
  • Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005 Aug 22; 2(1):69.
  • Daniel WA, Bickel MH, Honegger UE. The contribution of lysosomal trapping in the uptake of desipramine and chloroquine by different tissues. Toxicol Pharmacol. 1995 Dec;77(6):402–406.
  • Cardelli JA, Richardson J, Miears D. Role of acidic intracellular compartments in the biosynthesis of Dictyostelium lysosomal enzymes. The weak bases ammonium chloride and chloroquine differentially affect proteolytic processing and sorting. J Biol Chem. 1989 Feb 25;264(6):3454–3463.
  • Doharey PK, Singh V, Gedda MR, et al. In silico study indicates antimalarials as direct inhibitors of SARS-CoV-2-RNA dependent RNA polymerase. J Biomol Struct Dyn. 2021 Jan;21:1–18.
  • Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Mar 9; 71(15):732–739.
  • Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020 Mar 18; 6(1):16.
  • Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Feb 4;30:269–271.
  • Skinner TS, Manning LS, Johnston WA, et al. In vitro stage-specific sensitivity of Plasmodium falciparum to quinine and artemisinin drugs. Int J Parasitol. 1996 May;26(5):519–525.
  • Keyaerts E, Vijgen L, Maes P, et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004 Oct 8; 323(1):264–268.
  • Hoffmann M, Mosbauer K, Hofmann-Winkler H, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020 Jul 22; 585(7826):588–590.
  • Xie X, Muruato AE, Zhang X, et al. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nat Commun. 2020 Oct 15; 11(1):5214.
  • Kono M, Tatsumi K, Imai AM, et al. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res. 2008 Feb;77(2):150–152.
  • Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015; 116:76–84.
  • Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after Coronavirus infection. J Virol. 2019 Mar 15; 93(6):6.
  • Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018 Apr;517:9–15.
  • Bertram S, Heurich A, Lavender H, et al. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One. 2012 Apr 30; 7(4):e35876.
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020 May 28; 181(5):1016–35 e19.
  • Bradley BT, Maioli H, Johnston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020 Aug 1; 396(10247):320–332.
  • Ma D, Chen CB, Jhanji V, et al. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye (Lond). 2020 Jul; 34(7):1212–1219.
  • Clementi N, Criscuolo E, Diotti RA, et al. Combined prophylactic and therapeutic use maximizes hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro. Front Microbiol. 2020 Jul 10; 11:1704.
  • Sperber K, Louie M, Kraus T, et al. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther. 1995 Jul-Aug; 17(4):622–636.
  • Park SJ, Yu KM, Kim YI, et al. Antiviral efficacies of FDA-approved drugs against SARS-CoV-2 Infection in Ferrets. mBio. 2020 May 22; 11(3):3.
  • Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. 2020 Oct 15; 383(16):1544–1555.
  • Munoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19. Nature. 2020 Oct; 586(7830):509–515.
  • Rosenke K, Jarvis MA, Feldmann F, et al. Hydroxychloroquine proves ineffective in hamsters and macaques infected with SARS-CoV-2. bioRxiv. 2020 Jun 11;10.145144.
  • McChesney EW, Banks WF Jr., Fabian RJ. Tissue distribution of chloroquine, hydroxychloroquine, and desethylchloroquine in the rat. Toxicol Appl Pharmacol. 1967 May;10(3):501–513.
  • McChesney EW, Fasco MJ, Banks WF Jr. The metabolism of chloroquine in man during and after repeated oral dosage. J Pharmacol Exp Ther. 1967 Nov;158(2):323–331.
  • Gustafsson LL, Walker O, Alvan G, et al. Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol. 1983 Apr; 15(4):471–479.
  • Frisk-Holmberg M, Bergqvist Y, Termond E, et al. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur J Clin Pharmacol. 1984;26(4):521–530.
  • Looareesuwan S, White NJ, Chanthavanich P, et al. Cardiovascular toxicity and distribution kinetics of intravenous chloroquine. Br J Clin Pharmacol. 1986 Jul; 22(1):31–36.
  • White NJ, Miller KD, Churchill FC, et al. Chloroquine treatment of severe malaria in children. Pharmacokinetics, toxicity, and new dosage recommendations. N Engl J Med. 1988 Dec 8; 319(23):1493–1500.
  • Ferreira A, Oliveira ESA, Bettencourt P. Chronic treatment with hydroxychloroquine and SARS-CoV-2 infection. J Med Virol. 2020 Jul 9; 93(2):755–759.
  • Zhong J, Shen G, Yang H, et al. COVID-19 in patients with rheumatic disease in Hubei province, China: a multicentre retrospective observational study. Lancet Rheumatol. 2020 Sep; 2(9):e557–e64.
  • Ferri C, Giuggioli D, Raimondo V, et al. COVID-19 and rheumatic autoimmune systemic diseases: report of a large Italian patients series. Clin Rheumatol. 2020 Nov; 39(11):3195–3204.
  • Gentry CA, Humphrey MB, Thind SK, et al. Long-term hydroxychloroquine use in patients with rheumatic conditions and development of SARS-CoV-2 infection: a retrospective cohort study. Lancet Rheumatol. 2020 Nov;2(11):e689–e97.
  • Singer ME, Kaelber DC, Antonelli MJ. Hydroxychloroquine ineffective for COVID-19 prophylaxis in lupus and rheumatoid arthritis. Ann Rheum Dis. 2020 Aug 5; annrheumdis-2020-218500. DOI:10.1136/annrheumdis-2020-218500
  • Rentsch CT, DeVito NJ, MacKenna B, et al. Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform. Lancet Rheumatol. 2021 Jan; 3(1):e19–e27.
  • Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19. Med (N Y). 2020 Jun; 1(1):5.
  • Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020 Jun 18; 382(25):2411–2418.
  • Arshad S, Kilgore P, Chaudhry ZS, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020 Aug; 97:396–403.
  • García-Albéniz X, Del Amo J, Polo R, et al. Systematic review and meta-analysis of randomized trials of hydroxychloroquine for the prevention of COVID-19. medRxiv. 2021 Jan 9; 2020092920203869
  • Coromilas EJ, Kochav S, Goldenthal I, et al. Worldwide survey of COVID-19 associated arrhythmias. Circ Arrhythm Electrophysiol. 2021 Feb 7; DOI:10.1161/CIRCEP.120.009458
  • Watson JA, Tarning J, Hoglund RM, et al. Concentration-dependent mortality of chloroquine in overdose. Elife. 2020 Jul 8; 9:9.
  • Recovery, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N Engl J Med. 2020 Feb 25;384(8):693-704.
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 – final report. N Engl J Med. 2020 Nov 5; 383(19):1813–1826.
  • He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020 May; 26(5):672–675.
  • Update to living WHO guideline on drugs for covid-19. BMJ. 2020 Dec 17; 371:m4779.
  • Park JJH, Decloedt EH, Rayner CR, et al. Clinical trials of disease stages in COVID 19: complicated and often misinterpreted. Lancet Glob Health. 2020 Aug 20; 8(10):e1249-e1250.
  • Grau-Pujol B, Camprubi D, Marti-Soler H et al. Pre-exposure prophylaxis with hydroxychloroquine for COVID-19: initial results of a double-blind, placebo-controlled randomized clinical trial. PREPRINT (Version 1) available at Research Square Access date: Nov 20 [+https://doiorg/1021203/rs3rs-72132/v1+] 2020.
  • Lofgren SM, Nicol MR, Bangdiwala AS, et al. Safety of hydroxychloroquine among outpatient clinical trial participants for COVID-19. Open Forum Infect Dis. 2020 Nov; 7(11):ofaa500.
  • Mehra MR, Desai SS, Ruschitzka F, et al. RETRACTED: hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020. Retraction in: Lancet. 2020 Jun 5.
  • Sanchez-Chapula JA, Salinas-Stefanon E, Torres-Jacome J, et al. Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes. J Pharmacol Exp Ther. 2001 Apr; 297(1):437–445.
  • Sanson C, Schombert B, Filoche-Romme B, et al. Electrophysiological and pharmacological characterization of human inwardly rectifying Kir2.1 channels on an automated patch-clamp platform. Assay Drug Dev Technol. 2019 Apr;17(3):89–99.
  • Rodriguez-Menchaca AA, Navarro-Polanco RA, Ferrer-Villada T, et al. The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc Natl Acad Sci U S A. 2008 Jan 29; 105(4):1364–1368.
  • Capel RA, Herring N, Kalla M, et al. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: novel electrophysiological insights and therapeutic potential. Heart Rhythm. 2015 Oct; 12(10):2186–2194.
  • Chan XHS, Win YN, Mawer LJ, et al. Risk of sudden unexplained death after use of dihydroartemisinin-piperaquine for malaria: a systematic review and Bayesian meta-analysis. Lancet Infect Dis. 2018 Aug;18(8):913–923.
  • Harris L, Downar E, Shaikh NA, et al. Antiarrhythmic potential of chloroquine: new use for an old drug. Can J Cardiol. 1988 Sep;4(6):295–300.
  • Bourke L, McCormick J, Taylor V, et al. Hydroxychloroquine protects against cardiac ischaemia/reperfusion injury in vivo via enhancement of ERK1/2 phosphorylation. PLoS One. 2015; 10(12):e0143771.
  • Yancy CW, Fonarow GC. Coronavirus disease 2019 (COVID-19) and the heart – is heart failure the next chapter? JAMA Cardiology. 2020 Jul 27; 5(11):1216.
  • Collins R, Bowman L, Landray M, et al. The magic of randomization versus the myth of real-world evidence. N Engl J Med. 2020 Feb 13; 382(7):674–678.