671
Views
4
CrossRef citations to date
0
Altmetric
Review

The role of sulfonylureas in the treatment of type 2 diabetes

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 387-403 | Received 24 Jul 2021, Accepted 25 Oct 2021, Published online: 10 Nov 2021

References

  • Kalyani RR. Glucose-lowering drugs to reduce cardiovascular risk in type 2 diabetes. N Engl J Med. 2021;384(13):1248–1260.
  • Rawshani A, Rawshani A, Franzen S, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–644.
  • Fang M, Wang D, Coresh J, et al. Trends in diabetes treatment and control in U.S. adults, 1999-2018. N Engl J Med. 2021;384(23):2219–2228.
  • American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in Diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S111–S124.
  • Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of cardiology (ESC) and the European association for the study of diabetes (EASD). Eur Heart J. 2019;41:255–323.
  • Consoli A, Czupryniak L, Duarte R, et al. Positioning sulphonylureas in a modern treatment algorithm for patients with type 2 diabetes: expert opinion from a European consensus panel. Diabetes Obes Metab. 2020;22(10): 1705–1713.
  • Khunti K, Chatterjee S, Gerstein HC, et al. Do sulphonylureas still have a place in clinical practice? Lancet Diabetes Endocrinol. 2018;6(10):821–832.
  • Genuth S. Should Sulfonylureas remain an acceptable first-line add-on to metformin therapy in patients with type 2 diabetes? No, It’s Time to Move On! Diabetes Care. 2015;38:170–175.
  • Montvida O, Shaw J, Atherton JJ, et al. Long-term trends in antidiabetes drug usage in the U.S.: real-world evidence in patients newly diagnosed with type 2 diabetes. Diabetes Care. 2018;41(1):69–78.
  • Khunti K, Godec TR, Medina J, et al. Patterns of glycaemic control in patients with type 2 diabetes mellitus initiating second-line therapy after metformin monotherapy: retrospective data for 10 256 individuals from the united Kingdom and Germany. Diabetes Obes Metab. 2018;20(2):389–399.
  • The top 300 of 2021. ClinCalc; [ cited 2021 May 1]. Available from: https://clincalc.com/DrugStats/Top300Drugs.aspx
  • Thule PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Curr Diab Rep. 2014;14(4):473.
  • Gerich JE. Oral hypoglycemic agents. N Engl J Med. 1989;321(18):1231–1245.
  • McGavin JK, Perry CM, Goa KL., et al. Gliclazide modified release. Drugs. 2002;62(9):1357–1364.
  • Chung M, Kourides I, Canovatchel W, et al. Pharmacokinetics and pharmacodynamics of extended-release glipizide GITS compared with immediate-release glipizide in patients with type II diabetes mellitus. J Clin Pharmacol. 2002;42(6):651–657.
  • Colagiuri S, Matthews D, Leiter LA, et al. The place of gliclazide MR in the evolving type 2 diabetes landscape: a comparison with other sulfonylureas and newer oral antihyperglycemic agents. Diabetes Res Clin Pract. 2018;143:1–14.
  • Malaisse WJ. Mechanism of action of a new class of insulin secretagogues. Exp Clin Endocrinol Diabetes. 1999;107(Suppl S 04):S140–143.
  • Dornhorst A. Insulinotropic meglitinide analogues. Lancet. 2001;358(9294):1709–1716.
  • Schmid-Antomarchi H, De Weille J, Fosset M, et al. The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem. 1987;262(33):15840–15844.
  • Lang V, Youssef N, Light PE., et al. The molecular genetics of sulfonylurea receptors in the pathogenesis and treatment of insulin secretory disorders and type 2 diabetes. Curr Diab Rep. 2011;11(6):543–551.
  • Ashcroft FM, Harrison DE, Ashcroft SJ., et al. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature. 1984;312(5993):446–448.
  • Gribble FM, Reimann F. Sulphonylurea action revisited: the post-cloning era. Diabetologia. 2003;46(7):875–891.
  • Inagaki N, Gonoi T, Clement J, et al. Reconstitution of IKATP: an inward rectifier subunit plus the Sulfonylurea receptor. Science. 1995;270(5239):1166–1170.
  • Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995;268(5209):423–426.
  • Burke MA, Mutharasan RK, Ardehali H., et al. The Sulfonylurea receptor, an atypical ATP-Binding Cassette Protein, and its regulation of the KATP channel. Circ Res. 2008;102(2):164–176.
  • Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenomics Pers Med. 2010;3:145–161.
  • Gribble FM, Reimann F. Differential selectivity of insulin secretagogues: mechanisms, clinical implications, and drug interactions. J Diabetes Complications. 2003;17(2):11–15.
  • Winkler M, Stephan D, Bieger S, et al. Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A + B-site ligands. J Pharmacol Exp Ther. 2007;322(2):701–708.
  • Vila-Carriles WH, Zhao G, Bryan J., et al. Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels. FASEB J. 2007;21(1):18–25.
  • Proks P, Reimann F, Green N, et al. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51(Suppl Supplement 3):S368–376.
  • Abdelmoneim AS, Hasenbank SE, Seubert JM, et al. Variations in tissue selectivity amongst insulin secretagogues: a systematic review. Diabetes Obes Metab. 2012;14(2):130–138.
  • Lawrence CL, Proks P, Rodrigo GC, et al. Gliclazide produces high-affinity block of KATP channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells. Diabetologia. 2001;44(8):1019–1025.
  • Song DK, Ashcroft FM. Glimepiride block of cloned β-cell, cardiac and smooth muscle KATP channels. Br J Pharmacol. 2001;133(1):193–199.
  • Maddock HL, Siedlecka SM, Yellon DM., et al. Myocardial protection from either ischaemic preconditioning or nicorandil is not blocked by gliclazide. Cardiovasc Drugs Ther. 2004;18(2):113–119.
  • Riveline JP, Danchin N, Ledru F, et al. Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications. Diabetes Metab. 2003;29(3):207–222.
  • Auchampach JA, Maruyama M, Cavero I, et al. Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation. 1992;86(1):311–319.
  • Chutkow WA, Samuel V, Hansen PA, et al. Disruption of Sur2-containing K(ATP) channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci U S A. 2001;98(20):11760–11764.
  • Miki T, Minami K, Zhang L, et al. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab. 2002;283(6):E1178–1184.
  • Skupien J, Malecki MT, Mlynarski W, et al. Assessment of insulin sensitivity in adults with permanent neonatal diabetes mellitus due to mutations in the KCNJ11 gene encoding Kir6.2. Rev Diabet Stud. 2006;3(1):17–20.
  • Paggio A, Checchetto V, Campo A, et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019;572(7771): 609–613.
  • Bezerra Palacio P, Brito Lucas AM, Varlla de Lacerda Alexandre J, et al. Pharmacological and molecular docking studies reveal that glibenclamide competitively inhibits diazoxide-induced mitochondrial ATP-sensitive potassium channel activation and pharmacological preconditioning. Eur J Pharmacol. 2021;908:174379.
  • Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–1589.
  • Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–412.
  • Phung OJ, Scholle JM, Talwar M, et al. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA. 2010;303(14):1410–1418.
  • Hirst JA, Farmer AJ, Dyar A, et al. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia. 2013;56(5):973–984.
  • Chan SP, Colagiuri S. Systematic review and meta-analysis of the efficacy and hypoglycemic safety of gliclazide versus other insulinotropic agents. Diabetes Res Clin Pract. 2015;110(1):75–81.
  • Maloney A, Rosenstock J, Fonseca V., et al. A model-based meta-analysis of 24 Antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clin Pharmacol Ther. 2019;105(5):1213–1223.
  • Ridderstrale M, Andersen KR, Zeller C, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(9):691–700.
  • Ridderstrale M, Rosenstock J, Andersen KR, et al. Empagliflozin compared with glimepiride in metformin-treated patients with type 2 diabetes: 208-week data from a masked randomized controlled trial. Diabetes Obes Metab. 2018;20(12):2768–2777.
  • Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–2022.
  • Hollander P, Liu J, Hill J, et al. Ertugliflozin compared with glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin: the VERTIS SU randomized study. Diabetes Ther. 2018;9(1):193–207.
  • Hollander P, Hill J, Johnson J, et al. Results of VERTIS SU extension study: safety and efficacy of ertugliflozin treatment over 104 weeks compared to glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin. Curr Med Res Opin. 2019;35(8):1335–1343.
  • Schernthaner G, Grimaldi A, Di Mario U, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest. 2004;34(8):535–542.
  • Stenman S, Melander A, Groop PH, et al. What is the benefit of increasing the sulfonylurea dose? Ann Intern Med. 1993;118(3):169–172.
  • Naidoo P, Virendra R, Layla M., et al. Effects of gliclazide dose escalation on postprandial hyperglycemia in type 2 diabetes mellitus: a prospective, open-label, case-controlled, dose-escalation study. Curr Ther Res Clin Exp. 2006;67(2):81–102.
  • Cordiner RLM, and Pearson ER. Reflections on the sulphonylurea story: a drug class at risk of extinction or a drug class worth reviving? Diabetes Obes Metab. 2019;21(4):761–771.
  • Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787–794.
  • Scheen AJ. Pharmacotherapy of ‘treatment resistant’ type 2 diabetes. Expert Opin Pharmacother. 2017;18(5):503–515.
  • Holman RR, Steemson J, Turner RC., et al. Sulphonylurea failure in type 2 diabetes: treatment with a basal insulin supplement. Diabet Med. 1987;4(5):457–462.
  • Shin MS, Yu JH, Jung CH, et al. The duration of Sulfonylurea treatment is associated with β-cell dysfunction in patients with type 2 diabetes mellitus. Diabetes Technol Ther. 2012;14(11):1033–1042.
  • Gallwitz B, Rosenstock J, Rauch T, et al. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet. 2012;380(9840):475–483.
  • Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–2443.
  • Matthews DR, Cull CA, Stratton IM, et al. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK prospective diabetes study (UKPDS) group. Diabet Med. 1998;15:297–303.
  • Harrower AD. Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. J Diabetes Complications. 1994;8(4):201–203.
  • Satoh J, Takahashi K, Takizawa Y, et al. Secondary sulfonylurea failure: comparison of period until insulin treatment between diabetic patients treated with gliclazide and glibenclamide. Diabetes Res Clin Pract. 2005;70(3):291–297.
  • Mamza J, Mehta R, Donnelly R, et al. Important differences in the durability of glycaemic response among second-line treatment options when added to metformin in type 2 diabetes: a retrospective cohort study. Ann Med. 2016;48(4):224–234.
  • Zaccardi F, Jacquot E, Cortese V, et al. Comparative effectiveness of gliclazide modified release versus sitagliptin as second-line treatment after metformin monotherapy in patients with uncontrolled type 2 diabetes. Diabetes Obes Metab. 2020;22(12):2417–2426.
  • Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5(11): 887–897.
  • Rosenstock J, Kahn SE, and Johansen OE, et al. Effect of Linagliptin vs Glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial. JAMA. 2019;322(12):1155-1166 .
  • Donath MY, Ehses JA, Maedler K, et al. Mechanisms of beta-cell death in type 2 diabetes. Diabetes. 2005;54(Suppl Supplement 2):S108–113.
  • Maedler K, Carr RD, Bosco D, et al. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab. 2005;90(1):501–506.
  • Remedi MS, Nichols CG. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells. PLoS Med. 2008;5(10):e206.
  • Desouza C, Salazar H, Cheong B, et al. Association of hypoglycemia and cardiac ischemia: a study based on continuous monitoring. Diabetes Care. 2003;26(5):1485–1489.
  • Landstedt-Hallin L, Englund A, Adamson U, et al. Increased QT dispersion during hypoglycaemia in patients with type 2 diabetes mellitus. J Intern Med. 1999;246(3):299–307.
  • UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK prospective diabetes study (UKPDS) group. Lancet. 1998;352(9131):854–865.
  • ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–2572.
  • Landman GW, De Bock GH, Van Hateren KJ, et al. Safety and efficacy of gliclazide as treatment for type 2 diabetes: a systematic review and meta-analysis of randomized trials. PLoS One. 2014;9(2):e82880.
  • Hassanein M, Al Awadi FF, KES EH, et al. The characteristics and pattern of care for the type 2 diabetes mellitus population in the MENA region during Ramadan: an international prospective study (DAR-MENA T2DM). Diabetes Res Clin Pract. 2019;151:275–284.
  • Al Sifri S, Basiounny A, Echtay A, et al. The incidence of hypoglycaemia in Muslim patients with type 2 diabetes treated with sitagliptin or a sulphonylurea during Ramadan: a randomised trial. Int J Clin Pract. 2011;65(11):1132–1140.
  • Aravind SR, Ismail SB, Balamurugan R, et al. Hypoglycemia in patients with type 2 diabetes from India and Malaysia treated with sitagliptin or a sulfonylurea during Ramadan: a randomized, pragmatic study. Curr Med Res Opin. 2012;28(8):1289–1296.
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK prospective diabetes study (UKPDS) group. Lancet. 1998;352(9131):837–853.
  • Gallwitz B, Haupt A, Kraus P, et al. Changes in body composition after 9 months of treatment with exenatide twice daily versus glimepiride: comment letter on Jendle et al. Diabetes Obes Metab. 2010;12(12):1127–1128.
  • Feng W, Gao C, Bi Y, et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease. J Diabetes. 2017;9(8):800–809.
  • Feng WH, Bi Y, Li P, et al. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: a randomized trial. J Diabetes Investig. 2019;10(2):399–407.
  • Meinert CL, Knatterud GL, Prout TE, et al. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes. 1970;19(Suppl):789–830.
  • Roumie CL, Hung AM, Greevy RA, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157(9):601–610.
  • The University Group Diabetes Program. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. V. Evaluation of pheniformin therapy. Diabetes. 1975;24(Suppl 1):65–184.
  • Blackburn H, Jacobs DR Jr. The university group diabetes program 1961-1978: pioneering randomized controlled trial. Int J Epidemiol. 2016;46(5):1354–1364.
  • Schwartz TB, Meinert CL. The UGDP controversy: thirty-four years of contentious ambiguity laid to rest. Perspect Biol Med. 2004;47(4):564–574.
  • Leiter LA. Latest evidence on Sulfonylureas: what’s new? Diabetes Ther. 2020;11(S1):15–22.
  • Zoungas S, Chalmers J, Neal B, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371(15): 1392–1406.
  • Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–139.
  • The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559.
  • Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care. 2012;35(6):1364–1379.
  • Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288–2298.
  • Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170(14):1191–1201.
  • U.S. Food and Drug Administration. Guidance for industry. Diabetes Mellitus - Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes, December 2008; [ cited 2021 May 1]. Available from: www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf
  • Gangji AS, Cukierman T, Gerstein HC, et al. A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care. 2007;30(2):389–394.
  • Monami M, Genovese S, Mannucci E., et al. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15(10):938–953.
  • Simpson SH, Lee J, Choi S, et al. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol. 2015;3(1):43–51.
  • Rados DV, Pinto LC, Remonti LR, et al. The association between Sulfonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med. 2016;13(4):e1001992.
  • Douros A, Yin H, Yu OHY, et al. Pharmacologic differences of Sulfonylureas and the risk of adverse cardiovascular and hypoglycemic events. Diabetes Care. 2017;40(11):1506–1513.
  • Bain S, Druyts E, Balijepalli C, et al. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: a bayesian meta-analysis of survival data. Diabetes Obes Metab. 2017;19(3):329–335.
  • Patorno E, Schneeweiss S, Gopalakrishnan C, et al. Using real-world data to predict findings of an ongoing phase IV cardiovascular outcome trial: cardiovascular safety of Linagliptin Versus Glimepiride. Diabetes Care. 2019;42(12):2204–2210.
  • Rosenstock J, Perkovic V, Johansen OE, et al. Effect of Linagliptin vs Placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA. 2019;321(1):69–79.
  • Emdin CA, Klarin D, Natarajan P, et al. Genetic variation at the Sulfonylurea receptor, type 2 diabetes, and coronary heart disease. Diabetes. 2017;66(8):2310–2315.
  • Moen MF, Zhan M, Hsu VD, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1121–1127.
  • Scheen AJ. Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease. Exp Opin Drug Metab Toxicol. 2013;9(5):529–550.
  • Malaisse WJ. Gliquidone contributes to improvement of type 2 diabetes mellitus management: a review of pharmacokinetic and clinical trial data. Drugs R D. 2006;7(6):331–337.
  • Kidney Disease: Improving Global Outcomes Diabetes Work G. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98:S1–S115.
  • Fitipaldi H, McCarthy MI, Florez JC, et al. A global overview of precision medicine in type 2 diabetes. Diabetes. 2018;67(10):1911–1922.
  • Chung WK, Erion K, Florez JC, et al. Precision medicine in diabetes: a consensus report from the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care. 2020;43(7): 1617–1635.
  • Dennis JM, Henley WE, Weedon MN, et al. Sex and BMI alter the benefits and risks of Sulfonylureas and Thiazolidinediones in type 2 diabetes: a framework for evaluating stratification using routine clinical and individual trial data. Diabetes Care. 2018;41(9):1844–1853.
  • Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5): 361–369.
  • Dennis JM, Shields BM, Henley WE, et al. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 2019;7(6):442–451.
  • Misra S, Owen KR. Genetics of monogenic diabetes: present clinical challenges. Curr Diab Rep. 2018;18(12):141.
  • American Diabetes Association. 2. Classification and diagnosis of diabetes:standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S15–S33.
  • Pearson ER, Pruhova S, and Tack CJ, et al. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia. 2005;48(5):878–885.
  • Bowman P, Flanagan SE, Edghill EL, et al. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia. 2012;55(1):123–127.
  • Pearson ER, Starkey BJ, and Powell RJ, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275–1281.
  • Greeley SA, John PM, Winn AN, et al. The cost-effectiveness of personalized genetic medicine: the case of genetic testing in neonatal diabetes. Diabetes Care. 2011;34(3):622–627.
  • Pearson ER, Flechtner I, and Njolstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467–477.
  • Bowman P, Sulen A, Barbetti F, et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol. 2018;6(8):637–646.
  • Pearson ER. Diabetes: is there a future for pharmacogenomics guided treatment? Clin Pharmacol Ther. 2019;106(2):329–337.
  • Florez JC, Jablonski KA, Kahn SE, et al. Type 2 Diabetes–associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the diabetes prevention program. Diabetes. 2007;56(2):531–536.
  • Lang VY, Fatehi M, Light PE., et al. Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A. Pharmacogenet Genomics. 2012;22(3):206–214.
  • Li Q, Chen M, Zhang R, et al. KCNJ11 E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2014;41(10):748–754.
  • Feng Y, Mao G, Ren X, et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care. 2008;31(10):1939–1944.
  • Zhang H, Liu X, Kuang H, et al. Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in type 2 diabetes. Diabetes Res Clin Pract. 2007;77(1):58–61.
  • Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–323.
  • Schroner Z, Javorsky M, Tkacova R, et al. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13(1):89–91.
  • Javorsky M, Babjakova E, Klimcakova L, et al. Association between TCF7L2 genotype and glycemic control in diabetic patients treated with Gliclazide. Int J Endocrinol. 2013;2013:374858.
  • Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 influences therapeutic response to Sulfonylureas. Diabetes. 2007;56(8):2178–2182.
  • Zhou K, Donnelly L, Burch L, et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther. 2010;87(1):52–56.
  • Ragia G, Petridis I, Tavridou A, et al. Presence of CYP2C9*3 allele increases risk for hypoglycemia in type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics. 2009;10(11):1781–1787.
  • Yee J, Heo Y, Kim H, et al. Association between the CYP2C9 genotype and hypoglycemia among patients with type 2 diabetes receiving Sulfonylurea treatment: a meta-analysis. Clin Ther. 2021;(5). DOI: https://doi.org/10.1016/j.clinthera.2021.03.008.
  • Malki MA, Pearson ER. Drug-drug-gene interactions and adverse drug reactions. Pharmacogenomics J. 2020;20(3):355–366.
  • Dujic T, Cvijic S, and Elezovic A, et al. Interaction between Omeprazole and Gliclazide in relation to CYP2C19 phenotype. J Pers Med. 2021;11(5):367. doi:https://doi.org/10.3390/jpm11050367.
  • Diabetes Canada Clinical Practice Guidelines Expert Committee, Lipscombe L, Butalia S, Dasgupta K, et al. Pharmacologic Glycemic management of type 2 diabetes in adults: 2020 update. Can J Diabetes. 2020;44(7):575–591.
  • Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetologia. 2020;63(2):221–228.
  • Garber AJ, Handelsman Y, Grunberger G, et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 executive summary. Endocr Pract. 2020;26:107–139.
  • Zelniker TA, Wiviott SD, Raz I, et al. Comparison of the effects of glucagon-like peptide receptor Agonists and Sodium-Glucose Cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019;139(17):2022–2031.
  • International Diabetes Federation (IDF). IDF clinical practice recommendations for managing type 2 diabetes in primary care. (2020); 2017 [ cited 2021 May 1]. Avaialble from: https://www.idf.org/our-activities/care-prevention/type-2-diabetes.html
  • National Institute for Health and Care Excellence. Type 2 diabetes in adults: management. 2015 [ cited 2021 Mar 21]. Avaialble from: https://www.nice.org.uk/guidance/ng28/resources/type-2-diabetes-in-adults-management-pdf-1837338615493
  • Jia W, Weng J, Zhu D, et al. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab Res Rev. 2019;35(6):e3158.
  • Araki E, Goto A, Kondo T, et al. Japanese clinical practice guideline for diabetes 2019. J Diabetes Investig. 2020;11(4):1020–1076.
  • Kalra S, Aamir AH, Raza A, et al. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: a consensus statement. Indian J Endocrinol Metab. 2015;19(5):577–596.
  • AGREE Next Steps Consortium. Appraisal of guidelines for research and evaluation II: AGREE II instrument. 2013 [ cited 2021 May 1]. Avaialble from: https://www.agreetrust.org/wpcontent/uploads/2013/10/AGREE-II-Users-Manualand-23-item-Instrument_2009_UPDATE_2013.pdf
  • Khunti K, Hassanein M, Lee M-K, et al. Role of Gliclazide MR in the management of type 2 diabetes: report of a symposium on real-world evidence and new perspectives. Diabetes Ther; 2020;11:33–48.
  • Singh AK, Singh R. Is gliclazide a sulfonylurea with difference? A review in 2016. Expert Rev Clin Pharmacol. 2016;9(6):839–851.
  • Chow E, Poon EWM, Fok BSP, et al. CYP2C19*2 polymorphism is associated with impaired oral clearance of Gliclazide in healthy Chinese. Pharmgenomics Pers Med. 2019;12:397–401.
  • Zhang Y, Si D, Chen X, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br J Clin Pharmacol. 2007;64(1):67–74.
  • The Royal Australian College of General Practitioners and Diabetes Australia 2020. Management of type 2 diabetes: a handbook for general practice. March 2021 [ cited 2021 Jun 1]. Available from: https://www.racgp.org.au/getattachment/41fee8dc-7f97-4f87-9d90-b7af337af778/Management-of-type-2-diabetes-A-handbook-for-general-practice.aspx
  • Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetologia. 2018;61(12):2461–2498.
  • National Institute for Health and Care Excellence. Technology appraisal guidance [TA288]. Dapagliflozin in combination therapy for treating type 2 diabetes; 26 June 2013 [ cited 2021 May 1]. Available from: https://www.nice.org.uk/guidance/ta288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.