276
Views
0
CrossRef citations to date
0
Altmetric
Review

Future treatment of vascular calcification in chronic kidney disease

ORCID Icon, , , , , , , ORCID Icon, , , & show all
Pages 2041-2057 | Received 07 Jul 2023, Accepted 29 Sep 2023, Published online: 06 Oct 2023

References

  • Vashistha V, Lee M, Wu YL, et al. Low glomerular filtration rate and risk of myocardial infarction: a systematic review and meta-analysis. Int J Cardiol. 2016;223:401–409. doi: 10.1016/j.ijcard.2016.07.175
  • Lees JS, Welsh CE, Celis-Morales CA, et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat Med. 2019;25(11):1753–1760. doi: 10.1038/s41591-019-0627-8
  • Matsushita K, Van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731). doi: 10.1016/S0140-6736(10)60674-5
  • Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–1305. doi: 10.1056/nejmoa041031
  • Nelson AJ, Raggi P, Wolf M, et al. Targeting vascular calcification in chronic kidney disease. JACC. 2020;5(4):398–412. doi: 10.1016/j.jacbts.2020.02.002
  • Matsushita K, Sang Y, Ballew SH, et al. Subclinical atherosclerosis measures for cardiovascular prediction in CKD. J Am Soc Nephrol. 2015;26(2):439–447. doi: 10.1681/ASN.2014020173
  • Cozzolino M, Mangano M, Stucchi A, et al. Cardiovascular disease in dialysis patients. Nephrol Dialysis Transplantation. 2018;33(suppl_3):iii28–iii34. doi: 10.1093/ndt/gfy174
  • Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24(2):179–189. doi: 10.1681/ASN.2011121191
  • Hénaut L, Chillon JM, Kamel S, et al. Updates on the mechanisms and the care of cardiovascular calcification in chronic kidney disease. Semin Nephrol. 2018;38(3):233–250. doi: 10.1016/j.semnephrol.2018.02.004
  • Voelkl J, Lang F, Eckardt KU, et al. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci. 2019. doi:10.1007/s00018-019-03054-z.
  • Bover J, Aguilar A, Arana C, et al. Clinical approach to vascular calcification in patients with non-dialysis dependent chronic kidney disease: mineral-bone disorder-related aspects. Front Med. 2021;8. doi: 10.3389/fmed.2021.642718
  • Vervloet M, Cozzolino M. Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int. 2017;91(4):808–817. doi: 10.1016/j.kint.2016.09.024
  • Vahed SZ, Mostafavi S, Khatibi SMH, et al. vascular calcification: an important understanding in nephrology. VHRM. 2020;16:167–180. doi: 10.2147/VHRM.S242685
  • Valdivielso JM, Rodriguez-Puyol D, Pascual J, et al. Atherosclerosis in chronic kidney disease: more, less, or just different? Arteriosclerosis Thrombosis Vasc Biol. 2019;39(10):1938–1966. doi: 10.1161/ATVBAHA.119.312705
  • Zanoli L, Lentini P, Briet M, et al. Arterial stiffness in the heart disease of CKD. J Am Soc Nephrol. 2019;30(6):918–928. doi: 10.1681/asn.2019020117
  • Wang AYM, Woo J, Wang M, et al. Association of inflammation and malnutrition with cardiac valve calcification in continuous ambulatory peritoneal dialysis patients. J Am Soc Nephrol. 2001;12(9):1927–1936. doi: 10.1681/asn.v1291927
  • Virmani R, Joner M, Sakakura K. Recent highlights of ATVB: calcification. Arteriosclerosis Thrombosis Vasc Biol. 2014;34(7):1329–1332. doi: 10.1161/ATVBAHA.114.304000
  • Ix JH, De Boer I, Peralta C, et al. Serum phosphorus concentrations and arterial stiffness among individuals with normal kidney function to moderate kidney disease in MESA. Clin J Am Soc Nephrol. 2009;4(3):609–615. doi: 10.2215/CJN.04100808
  • Chen Z, Qureshi A, Ripsweden J, et al. Vertebral bone density associates with coronary artery calcification and is an independent predictor of poor outcome in end-stage renal disease patients. Bone. 2016;92:50–57. doi: 10.1016/j.bone.2016.08.007
  • Chen J, Budoff M, Reilly M, et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017;2(6):635. doi: 10.1001/jamacardio.2017.0363
  • Hutcheson JD, Goettsch C. Cardiovascular calcification heterogeneity in chronic kidney disease. Circ Res. 2023;132(8):993–1012. doi: 10.1161/CIRCRESAHA.123.321760
  • Pencak P, Czerwienska B, Ficek R, et al. Calcification of coronary arteries and abdominal aorta in relation to traditional and novel risk factors of atherosclerosis in hemodialysis patients. BMC Nephrol. 2013;14(1). doi: 10.1186/1471-2369-14-10
  • Bernelot Moens SJ, Verweij S, Van Der Valk F, et al. Arterial and cellular inflammation in patients with CKD. J Am Soc Nephrol. 2017;28(4):1278–1285. doi: 10.1681/ASN.2016030317
  • Libby P, Buring J, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1). doi: 10.1038/s41572-019-0106-z
  • Jinnouchi H, Sato Y, Sakamoto A, et al. Calcium deposition within coronary atherosclerotic lesion: implications for plaque stability. Atherosclerosis. 2020;306:85–95. doi: 10.1016/j.atherosclerosis.2020.05.017
  • Vliegenthart R, Oudkerk M, Hofman A, et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112(4):572–577. doi: 10.1161/CIRCULATIONAHA.104.488916
  • Mori H, Torii S, Kutyna M, et al. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018;11(1):127–142. doi: 10.1016/j.jcmg.2017.10.012
  • Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271. doi: 10.1001/jama.2013.282535
  • Reiss AB, Miyawaki N, Moon J, et al. CKD, arterial calcification, atherosclerosis and bone health: inter-relationships and controversies. Atherosclerosis. 2018;278:49–59. doi: 10.1016/j.atherosclerosis.2018.08.046
  • Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010;7(9):528–536. doi: 10.1038/nrcardio.2010.115
  • Shi X, Gao J, Lv Q, et al. Calcification in atherosclerotic plaque vulnerability: friend or foe? Front Physiol. 2020;11: doi: 10.3389/fphys.2020.00056
  • Kawtharany L, Bessueille L, Issa H, et al. Inflammation and microcalcification: a never-ending vicious cycle in atherosclerosis? J Vasc Res. 2022;59(3):137–150. doi: 10.1159/000521161
  • Lanzer P, Hannan FM, Lanzer JD, et al. Medial arterial calcification: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(11):1145–1165. doi: 10.1016/j.jacc.2021.06.049
  • London GM, Guérin AP, Marchais SJ, et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dialysis Transplantation. 2003;18(9):1731–1740. doi: 10.1093/ndt/gfg414
  • Niskanen L, Siitonen O, Suhonen M, et al. Medial artery calcification predicts cardiovascular mortality in patients with NIDDM. Diabetes Care. 1994;17(11):1252–1256. doi: 10.2337/diacare.17.11.1252
  • Lehto S, Niskanen L, Suhonen M, et al. Medial artery calcification: a neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16(8):978–983. doi: 10.1161/01.ATV.16.8.978
  • Shanahan CM. Mechanisms of vascular calcification in CKD—evidence for premature ageing? Nat Rev Nephrol. 2013;9(11):661–670. doi: 10.1038/nrneph.2013.176
  • Losurdo F, Ferraresi R, Ucci A, et al. Association of infrapopliteal medial arterial calcification with lower-limb amputations in high-risk patients: a systematic review and meta-analysis. Vascular Medicine (United Kingdom). 2021;26(2):164–173. doi: 10.1177/1358863X20979738
  • Paoletti E, Bellino D, Cassottana P, et al. Left ventricular hypertrophy in nondiabetic predialysis CKD. Am J Kidney Diseases. 2005;46(2):320–327. doi: 10.1053/j.ajkd.2005.04.031
  • Ritz E. Left ventricular hypertrophy in renal disease: beyond preload and afterload. Kidney Int. 2009;75(8):771–773. doi: 10.1038/ki.2009.35
  • Baber U, Howard VJ, Halperin JL, et al. Association of chronic kidney disease with atrial fibrillation among adults in the United States REasons for geographic and racial differences in stroke (REGARDS) study. Circ Arrhythm Electrophysiol. 2011;4(1):26–32. doi: 10.1161/CIRCEP.110.957100
  • Huang CL, Wu IH, Wu YW, et al. Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease. PLoS One. 2014;9(2):e90201. doi: 10.1371/journal.pone.0090201
  • Roijers JP, Rakké YS, Hopmans CJ, et al. A mortality prediction model for elderly patients with critical limb ischemia. J Vasc Surg. 2020;71(6):2065–2072.e2. doi: 10.1016/j.jvs.2019.08.245
  • Chen W, Melamed ML. Vascular calcification in predialysis CKD: common and deadly. Clin J Am Soc Nephrol. 2015;10(4):551–553. doi: 10.2215/CJN.01940215
  • Ureña-Torres P, D’Marco L, Raggi P, et al. Valvular heart disease and calcification in CKD: more common than appreciated. Nephrol Dialysis Transplantation. 2021;35(12):2046–2053. doi: 10.1093/NDT/GFZ133
  • Leopold JA. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605–614. doi: 10.1161/CIRCINTERVENTIONS.112.971028
  • Di Lullo L, Gorini A, Bellasi A, et al. Fibroblast growth factor 23 and parathyroid hormone predict extent of aortic valve calcifications in patients with mild to moderate chronic kidney disease. Clin Kidney J. 2015;8(6):732–736. doi: 10.1093/ckj/sfv073
  • Linefsky JP, OBrien KD, Katz R, et al. Association of serum phosphate levels with aortic valve sclerosis and annular calcification. J Am Coll Cardiol. 2011;58(3):291–297. doi: 10.1016/j.jacc.2010.11.073
  • Brandenburg VM, Schuh A, Kramann R. Valvular calcification in chronic kidney disease. Adv Chronic Kidney Dis. 2019;26(6):464–471. doi: 10.1053/j.ackd.2019.10.004
  • Amann K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(6):1599–1605. doi: 10.2215/CJN.02120508
  • Adeney KL, Siscovick DS, Ix JH, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol. 2009;20(2):381–387. doi: 10.1681/ASN.2008040349
  • Cianciolo G, Manna GL, Capelli I, et al. The role of activin: the other side of chronic kidney disease–mineral bone disorder? Nephrol Dialysis Transplantation. 2021;36(6):966–974. doi: 10.1093/ndt/gfaa203
  • Marreiros C, Viegas C, Simes D. Targeting a silent disease: vascular calcification in chronic kidney disease. IJMS. 2022;23(24):16114. doi: 10.3390/ijms232416114
  • Kanbay M, Copur S, Tanriover C, et al. The pathophysiology and management of vascular calcification in chronic kidney disease patients. Expert Rev Cardiovasc Ther. 2023;21(2):75–85. doi: 10.1080/14779072.2023.2174525
  • Cannata‐Andía JB, Carrillo‐López N, Messina OD, et al. Pathophysiology of vascular calcification and bone loss: linked disorders of ageing? Nutrients. 2021;13(11):3835. doi: 10.3390/nu13113835
  • Evenepoel P, Dejongh S, Verbeke K, et al. The role of gut dysbiosis in the bone–vascular axis in chronic kidney disease. Toxins (Basel). 2020;12(5):285. doi: 10.3390/toxins12050285
  • Moe SM, Drüeke TB. Kidney disease: improving global outcomes (KDIGO) CKD-MBD work group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int. 2009;76(113):S1–S130.
  • Mok Y, Wang F, Ballew SH, et al. Kidney function, bone-mineral metabolism markers, and calcification of coronary arteries, aorta, and cardiac valves in older adults. Atherosclerosis. 2023;368:35–43. doi: 10.1016/j.atherosclerosis.2023.01.007
  • Cozzolino M, Ciceri P, Galassi A, et al. The key role of phosphate on vascular calcification. Toxins (Basel). 2019;11(4):213. doi: 10.3390/toxins11040213
  • Haarhaus M, Cianciolo G, Barbuto S, et al. Alkaline phosphatase: an old friend as treatment target for cardiovascular and mineral bone disorders in chronic kidney disease. Nutrients. 2022;14(10):2124. doi: 10.3390/nu14102124
  • Ciceri P, Elli F, Cappelletti L, et al. A new in vitro model to delay high phosphate-induced vascular calcification progression. Mol Cell Biochem. 2015;410(1–2):197–206. doi: 10.1007/s11010-015-2552-6
  • Liu L, Liu Y, Zhang Y, et al. High phosphate-induced downregulation of PPARγ contributes to CKD-associated vascular calcification. J Mol Cell Cardiol. 2018;114:264–275. doi: 10.1016/j.yjmcc.2017.11.021
  • Baron R, Rawadi G. Minireview: targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology. 2007;148(6):2635–2643. doi: 10.1210/en.2007-0270
  • Carrillo-López N, Panizo S, Alonso-Montes C, et al. Direct inhibition of osteoblastic Wnt pathway by fibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int. 2016;90(1):77–89. doi: 10.1016/j.kint.2016.01.024
  • Huber BC. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration. World J Stem Cells. 2014;6(5):637. doi: 10.4252/wjsc.v6.i5.637
  • Cianciolo G, Galassi A, Capelli I, et al. Klotho-FGF23, cardiovascular disease, and vascular calcification: black or white? Curr Vasc Pharmacol. 2017;16(2):143–156. doi: 10.2174/1570161115666170310092202
  • Kuro-O M. Ageing-related receptors resolved. Nature. 2018;553(7689):409–410. doi: 10.1038/d41586-017-09032-4
  • Kuro-O M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. doi: 10.1038/36285
  • Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Investig. 2004;113(4):561–568. doi: 10.1172/JCI200419081
  • Lindberg K, Olauson H, Amin R, et al. Arterial Klotho expression and FGF23 effects on vascular calcification and function. PLoS One. 2013;8(4):e60658. doi: 10.1371/journal.pone.0060658
  • Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev. 2017;35:124–146. doi: 10.1016/j.arr.2016.09.001
  • Faul C, Wolf M. Hunt for the culprit of cardiovascular injury in kidney disease: figure 1. Cardiovasc Res. 2015;108(2):209–211. doi: 10.1093/cvr/cvv228
  • Martin A, David V, Darryl Quarles L. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–155. doi: 10.1152/physrev.00002.2011
  • Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Investig. 2011;121(11):4393–4408. doi: 10.1172/JCI46122
  • Leifheit-Nestler M, Siemer RG, Flasbart K, et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dialysis Transplantation. 2016;31(7):1088–1099. doi: 10.1093/ndt/gfv421
  • Durlacher-Betzer K, Hassan A, Levi R, et al. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018;94(2):315–325. doi: 10.1016/j.kint.2018.02.026
  • Czaya B, Faul C. FGF23 and inflammation—a vicious coalition in CKD. Kidney Int. 2019;96(4):813–815. doi: 10.1016/j.kint.2019.05.018
  • Komaba H, Fukagawa M. The role of FGF23 in CKD—with or without Klotho. Nat Rev Nephrol. 2012;8(8):484–490. doi: 10.1038/nrneph.2012.116
  • Mirza MAI, Larsson A, Melhus H, et al. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis. 2009;207(2):546–551. doi: 10.1016/j.atherosclerosis.2009.05.013
  • Jimbo R, Kawakami-Mori F, Mu S, et al. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int. 2014;85(5):1103–1111. doi: 10.1038/ki.2013.332
  • Schoppet M, Hofbauer LC, Brinskelle-Schmal N, et al. Serum level of the phosphaturic factor FGF23 is associated with abdominal aortic calcification in men: the STRAMBO study. J Clin Endocrinol Metab. 2012;97(4):E575–E583. doi: 10.1210/jc.2011-2836
  • Khan AM, Chirinos JA, Litt H, et al. FGF-23 and the progression of coronary arterial calcification in patients new to dialysis. Clin J Am Soc Nephrol. 2012;7(12):2017–2022. doi: 10.2215/CJN.02160212
  • Ozkok A, Kekik C, Karahan GE, et al. FGF-23 associated with the progression of coronary artery calcification in hemodialysis patients. BMC Nephrol. 2013;14(1). doi: 10.1186/1471-2369-14-241
  • Tamei N, Ogawa T, Ishida H, et al. Serum fibroblast growth factor-23 levels and progression of aortic arch calcification in non-diabetic patients on chronic hemodialysis. J Atheroscler Thromb. 2011;18(3):217–223. doi: 10.5551/jat.5595
  • Viegas CSB, Santos L, Macedo AL, et al. Chronic kidney disease circulating calciprotein particles and extracellular vesicles promote vascular calcification: a role for GRP (Gla-rich protein). Arterioscler Thromb Vasc Biol. 2018;38(3):575–587. doi: 10.1161/ATVBAHA.117.310578
  • Schurgers LJ, Uitto J, Reutelingsperger CP. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med. 2013;19(4):217–226. doi: 10.1016/j.molmed.2012.12.008
  • Fusaro M, Noale M, Viola V, et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J Bone Miner Res. 2012;27(11):2271–2278. doi: 10.1002/jbmr.1677
  • Shea MK, Booth SL, Miller ME, et al. Association between circulating vitamin K1 and coronary calcium progression in community-dwelling adults: the multi-ethnic study of atherosclerosis. Am J Clin Nutr. 2013;98(1):197–208. doi: 10.3945/ajcn.112.056101
  • Rattazzi M, Bennett BJ, Bea F, et al. Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: potential role of chondrocyte-like cells. Arterioscler Thromb Vasc Biol. 2005;25(7):1420–1425. doi: 10.1161/01.ATV.0000166600.58468.1b
  • Fadini GP, Rattazzi M, Matsumoto T, et al. Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation. 2012;125(22):2772–2781. doi: 10.1161/CIRCULATIONAHA.112.090860
  • Gössl M, Mödder UI, Atkinson EJ, et al. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol. 2008;52(16):1314–1325. doi: 10.1016/j.jacc.2008.07.019
  • Fadini GP, Albiero M, Menegazzo L, et al. Procalcific phenotypic drift of circulating progenitor cells in type 2 diabetes with coronary artery disease. Exp Diabetes Res. 2012;2012:1–7. doi: 10.1155/2012/921685
  • Cianciolo G, Capelli I, Cappuccilli M, et al. Calcifying circulating cells: an uncharted area in the setting of vascular calcification in CKD patients. Clin Kidney J. 2016;9(2):280–286. doi: 10.1093/ckj/sfv145
  • Cianciolo G, Manna GL, Della Bella E, et al. Effect of vitamin D receptor activator therapy on vitamin D receptor and osteocalcin expression in circulating endothelial progenitor cells of hemodialysis patients. Blood Purif. 2013;35(1–3):187–195. doi: 10.1159/000347102
  • Mazzaferro S, Cianciolo G, De Pascalis A, et al. Bone, inflammation and the bone marrow niche in chronic kidney disease: what do we know? Nephrol Dialysis Transplantation. 2018;33(12):2092–2100. doi: 10.1093/ndt/gfy115
  • Fadini GP, Albiero M, Menegazzo L, et al. Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ Res. 2011;108(9):1112–1121. doi: 10.1161/CIRCRESAHA.110.234088
  • Menegazzo L, Albiero M, Millioni R, et al. Circulating myeloid calcifying cells have antiangiogenic activity via thrombospondin-1 overexpression. FASEB J. 2013;27(11):4355–4365. doi: 10.1096/fj.12-223719
  • Hou YC, Lu CL, Yuan TH, et al. The epigenetic landscape of vascular calcification: an integrative perspective. Int J Mol Sci. 2020;21(3):980. doi: 10.3390/ijms21030980
  • Wang C, Xu W, An J, et al. Poly(adp-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2. Nat Commun. 2019;10(1). doi: 10.1038/s41467-019-09174-1
  • Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–832. doi: 10.1016/0735-1097(90)90282-T
  • Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788. doi: 10.1001/jama.2012.9624
  • Wang XR, Zhang JJ, Xu XX, et al. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail. 2019;41(1):244–256. doi: 10.1080/0886022X.2019.1595646
  • Ketteler M, Block GA, Evenepoel P, et al. Diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder: synopsis of the kidney disease: improving global outcomes 2017 clinical practice guideline update. Ann internal med. 2018;168(6):422. doi: 10.7326/M17-2640
  • Adragão T, Pires A, Birne R, et al. A plain X-ray vascular calcification score is associated with arterial stiffness and mortality in dialysis patients. Nephrol Dialysis Transplantation. 2009;24(3):997–1002. doi: 10.1093/ndt/gfn584
  • Kauppila LI, Polak JF, Cupples LA, et al. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis. 1997;132(2):245–250. doi: 10.1016/S0021-9150(97)00106-8
  • Bellasi A, Ferramosca E, Muntner P, et al. Correlation of simple imaging tests and coronary artery calcium measured by computed tomography in hemodialysis patients. Kidney Int. 2006;70(9):1623–1628. doi: 10.1038/sj.ki.5001820
  • Utsunomiya H, Yamamoto H, Urabe Y, et al. Association between heart calcification assessed by echocardiography and future cardiovascular disease mortality and morbidity. IJC Heart And Vessels. 2013;2:15–20. doi: 10.1016/j.ijchv.2013.11.007
  • Zebboudj AF, Imura M, Boström K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem. 2002;277(6):4388–4394. doi: 10.1074/jbc.M109683200
  • Raggi P, Bellasi A. Clinical assessment of vascular calcification. Adv Chronic Kidney Dis. 2007;14(1):37–43. doi: 10.1053/j.ackd.2006.10.006
  • Desjardins L, Liabeuf S, Renard C, et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporosis Int. 2012;23(7):2017–2025. doi: 10.1007/s00198-011-1838-0
  • Scialla JJ, Xie H, Rahman M, et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014;25(2):349–360. doi: 10.1681/ASN.2013050465
  • Turan MN, Kircelli F, Yaprak M, et al. FGF-23 levels are associated with vascular calcification, but not with atherosclerosis, in hemodialysis patients. Int Urol Nephrol. 2016;48(4):609–617. doi: 10.1007/s11255-016-1231-1
  • Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22(1):124–136. doi: 10.1681/ASN.2009121311
  • Komaba H, Fukagawa M. Fetuin–mineral complex: a new potential biomarker for vascular calcification? Kidney Int. 2009;75(9):874–876. doi: 10.1038/ki.2009.52
  • Ketteler M, Bongartz P, Westenfeld R, et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet. 2003;361(9360):827–833. doi: 10.1016/S0140-6736(03)12710-9
  • Pasch A. Novel assessments of systemic calcification propensity. Curr Opin Nephrol Hypertens. 2016;25(4):278–284. doi: 10.1097/MNH.0000000000000237
  • Nollet L, Van Gils M, Fischer S, et al. Serum calcification propensity T50 associates with disease severity in patients with Pseudoxanthoma Elasticum. J Clin Med. 2022;11(13):3727. doi: 10.3390/jcm11133727
  • Lomashvili KA, Wang X, Wallin R, et al. Matrix gla protein metabolism in vascular smooth muscle and role in uremic vascular calcification. J Biol Chem. 2011;286(33):28715–28722. doi: 10.1074/jbc.M111.251462
  • Delanaye P, Krzesinski JM, Warling X, et al. Dephosphorylated-uncarboxylated matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol. 2014;15(1). doi: 10.1186/1471-2369-15-145
  • Munroe PB, Olgunturk RO, Fryns JP, et al. Mutations in the gene encoding the human matrix Gla protein cause keutel syndrome. Nat Genet. 1999;21(1):142–144. doi: 10.1038/5102
  • Leonor Cancela M, Conceição N, Laizé V. Gla-rich protein, a new player in tissue calcification? Adv Nutr. 2012;3(2):174–181. doi: 10.3945/an.111.001685
  • Xu C, Smith ER, Tiong MK, et al. Interventions to attenuate vascular calcification progression in chronic kidney disease: a systematic review of clinical trials. J Am Soc Nephrol. 2022;33(5):1011–1032. doi: 10.1681/ASN.2021101327
  • Floege J. Phosphate binders in chronic kidney disease: an updated narrative review of recent data. J Nephrol. 2020;33(3):497–508. doi: 10.1007/s40620-019-00689-w
  • Gosik R, Danel K. The rising risk of chronic kidney disease (CKD) and how it is dealt with: a review of Current and potential phosphate binders (PB). MRMC. 2021;21(19):3052–3061. doi: 10.2174/1389557521666210616161728
  • Neradova A, Schumacher SP, Hubeek I, et al. Phosphate binders affect vitamin K concentration by undesired binding, an in vitro study. BMC Nephrol. 2017;18(1). doi: 10.1186/s12882-017-0560-3
  • Ogata H, Takeshima A, Ito H. An update on phosphate binders for the treatment of hyperphosphatemia in chronic kidney disease patients on dialysis: a review of safety profiles. Expert Opin Drug Saf. 2022;21(7):947–955. doi: 10.1080/14740338.2022.2044472
  • Raggi P, Bommer J, Chertow GM. Valvular calcification in hemodialysis patients randomized to calcium-based phosphorus binders or sevelamer. J Heart Valve Disease. 2004;13(1):134–41.
  • Galassi A, Spiegel DM, Bellasi A, et al. Accelerated vascular calcification and relative hypoparathyroidism in incident haemodialysis diabetic patients receiving calcium binders. Nephrol Dialysis Transplantation. 2006;21(11):3215–3222. doi: 10.1093/ndt/gfl395
  • Qunibi W, Moustafa M, Muenz LR, et al. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the calcium acetate renagel evaluation-2 (CARE-2) study. Am J Kidney Diseases. 2008;51(6):952–965. doi: 10.1053/j.ajkd.2008.02.298
  • Barreto DV, Barreto FDC, De Carvalho AB, et al. Phosphate binder impact on bone remodeling and coronary calcification – results from the BRiC study. Nephron Clin Pract. 2008;110(4):c273–c283. doi: 10.1159/000170783
  • Toussaint ND, Pedagogos E, Lioufas NM, et al. A randomized trial on the effect of phosphate reduction on vascular end points in CKD (improve-CKD). J Am Soc Nephrol. 2020;31(11):2653–2666. doi: 10.1681/ASN.2020040411
  • Mozos I, Marginean O. Links between vitamin D deficiency and cardiovascular diseases. Bio Med Res Int. 2015;2015:1–12. doi: 10.1155/2015/109275
  • Watson KE, Abrolat ML, Malone LL, et al. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation. 1997;96(6):1755–1760. doi: 10.1161/01.CIR.96.6.1755
  • Levin A, Yan CL. Vitamin D and its analogues: do they protect against cardiovascular disease in patients with kidney disease? Kidney Int. 2005;68(5):1973–1981. doi: 10.1111/j.1523-1755.2005.00651.x
  • Cheng S, Coyne D. Oral paricalcitol for the treatment of secondary hyperparathyroidism in chronic kidney disease. Ther Clin Risk Manag. 2006;2(3):297–301. doi: 10.2147/tcrm.2006.2.3.297
  • Lau WL, Leaf EM, Hu MC, et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261–1270. doi: 10.1038/ki.2012.322
  • Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Diseases. 1995;26(5):852–860. doi: 10.1016/0272-6386(95)90455-7
  • Mizobuchi M, Finch JL, Martin DR, et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007;72(6):709–715. doi: 10.1038/sj.ki.5002406
  • Bellasi A, Reiner M, Pétavy F, et al. Presence of valvular calcification predicts the response to cinacalcet: data from the ADVANCE study. J Heart Valve Dis. 2013;22(3):391–9.
  • Anis KH, Pober D, Rosas SE. Vitamin D analogues and coronary calcification in CKD stages 3 and 4: a randomized controlled trial of calcitriol versus paricalcitol. Kidney Med. 2020;2(4):450–458. doi: 10.1016/j.xkme.2020.05.009
  • Sundararaman SS, van der Vorst EPC. Calcium-sensing receptor (casr), its impact on inflammation and the consequences on cardiovascular health. Int J Mol Sci. 2021;22(5):2478. doi: 10.3390/ijms22052478
  • Torres PAU, De Broe M. Calcium-sensing receptor, calcimimetics, and cardiovascular calcifications in chronic kidney disease. Kidney Int. 2012;82(1):19–25. doi: 10.1038/ki.2012.69
  • Raggi P, Chertow GM, Torres PU, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dialysis Transplantation. 2011;26(4):1327–1339. doi: 10.1093/ndt/gfq725
  • Koleganova N, Piecha G, Ritz E, et al. A calcimimetic (R-568), but not calcitriol, prevents vascular remodeling in uremia. Kidney Int. 2009;75(1):60–71. doi: 10.1038/ki.2008.490
  • Shoji T, Nakatani S, Kabata D, et al. Comparative effects of etelcalcetide and maxacalcitol on serum calcification propensity in secondary hyperparathyroidism a randomized clinical trial. Clin J Am Soc Nephrol. 2021;16(4):599–612. doi: 10.2215/CJN.16601020
  • Giger EV, Castagner B, Leroux JC. Biomedical applications of bisphosphonates. JControlled Release. 2013;167(2):175–188. doi: 10.1016/j.jconrel.2013.01.032
  • Li Q, Kingman J, Sundberg JP, et al. Etidronate prevents, but does not reverse, ectopic mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6−/−). Oncotarget. 2018;9(56):30721–30730. doi: 10.18632/oncotarget.10738
  • Hildebrand S, Cunningham J. Is there a role for bisphosphonates in vascular calcification in chronic kidney disease? Bone. 2021;142:115751. doi: 10.1016/j.bone.2020.115751
  • Caffarelli C, Montagnani A, Nuti R, et al. Bisphosphonates, atherosclerosis and vascular calcification: update and systematic review of clinical studies. Clin Interventions Aging. 2017;12:1819–1828. doi: 10.2147/CIA.S138002
  • Singh A, Tandon S, Tandon C. An update on vascular calcification and potential therapeutics. Mol Biol Rep. 2021;48(1):887–896. doi: 10.1007/s11033-020-06086-y
  • Roumeliotis S, Duni A, Vaios V, et al. Vitamin K supplementation for prevention of vascular calcification in chronic kidney disease patients: are we there yet? Nutrients. 2022;14(5):925. doi: 10.3390/nu14050925
  • Cozzolino M, Mangano M, Galassi A, et al. Vitamin K in chronic kidney disease. Nutrients. 2019 Jan 14;11(1): 168. PMID: 30646590; PMCID: PMC6356438.]. 10.3390/nu11010168.
  • Li Y, Xie Z, Xu D. Inhibition of maintenance hemodialysis related vascular calcification by vitamin K in chronic kidney disease. Int J Clin Exp Med. 2017;10(11):15309–15315.
  • Lin YL, Hsu BG. Vitamin K and vascular calcification in chronic kidney disease: an update of current evidence. Tzu Chi Med J. 2023;35(1):44. doi: 10.4103/tcmj.tcmj_100_22
  • Wen W, Portales-Castillo I, Seethapathy R, et al. Intravenous sodium thiosulphate for vascular calcification of hemodialysis patients—a systematic review and meta-analysis. Nephrol Dialysis Transplantation. 2023;38(3):733–745. doi: 10.1093/ndt/gfac171
  • Song YH, Wang SY, Lang JH, et al. Therapeutic effect of intravenous sodium thiosulfate for uremic pruritus in hemodialysis patients. Ren Fail. 2020;42(1):987–993. doi: 10.1080/0886022X.2020.1822867
  • Djuric P, Dimkovic N, Schlieper G, et al. Sodium thiosulphate and progression of vascular calcification in end-stage renal disease patients: a double-blind, randomized, placebo-controlled study. Nephrol Dialysis Transplantation. 2020;35(1):162–169. doi: 10.1093/ndt/gfz204
  • Chen NC, Hsu CY, Chen CL. The strategy to prevent and regress the vascular calcification in dialysis patients. Bio Med Res Int. 2017;2017:1–11. doi: 10.1155/2017/9035193
  • Iseri K, Watanabe M, Yoshikawa H, et al. Effects of denosumab and alendronate on bone Health and vascular function in hemodialysis patients: a randomized, controlled trial. J Bone Mineral Res. 2019;34(6):1014–1024. doi: 10.1002/jbmr.3676
  • Cianciolo G, Tondolo F, Barbuto S, et al. Denosumab-induced hypocalcemia and hyperparathyroidism in de novo kidney transplant recipients. Am J Nephrol. 2021;52(8):611–619. doi: 10.1159/000518363
  • Goettsch C, Strzelecka-Kiliszek A, Bessueille L, et al. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res. 2022;118(1):84–96. doi: 10.1093/cvr/cvaa299
  • Tani T, Fujiwara M, Orimo H, et al. Inhibition of tissue-nonspecific alkaline phosphatase protects against medial arterial calcification and improves survival probability in the CKD-MBD mouse model. J Pathol. 2020;250(1):30–41. doi: 10.1002/path.5346
  • Sinha S, Raggi P, Chertow GM. SNF472: mechanism of action and results from clinical trials. Curr Opin Nephrol Hypertens. 2021;30(4):424–429. doi: 10.1097/MNH.0000000000000726
  • Zabirnyk A, Ferrer MD, Bogdanova M, et al. SNF472, a novel anti-crystallization agent, inhibits induced calcification in an in vitro model of human aortic valve calcification. Vasc Pharmacol. 2019;122-123:106583. doi: 10.1016/j.vph.2019.106583
  • Perelló J, Ferrer MD, Del Mar Pérez M, et al. Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis. Br J Pharmacol. 2020;177(19):4400–4415. doi: 10.1111/bph.15163
  • Raggi P, Bellasi A, Bushinsky D, et al. Slowing progression of cardiovascular calcification with SNF472 in patients on hemodialysis: results of a randomized Phase 2b study. Circulation. 2020;141(9):728–739. doi: 10.1161/CIRCULATIONAHA.119.044195

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.