188
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in drug treatments for dry eye disease

, , , , , & show all
Pages 2059-2079 | Received 04 Jul 2023, Accepted 06 Oct 2023, Published online: 17 Oct 2023

References

  • Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II epidemiology report. Ocul Surf. 2017;15:334–365. doi: 10.1016/j.jtos.2017.05.003
  • Alves M, Fonseca EC, Alves MF, et al. Dry eye disease treatment: a systematic review of published trials and a critical appraisal of therapeutic strategies. Ocul Surf. 2013;11(3):181–192. doi: 10.1016/j.jtos.2013.02.002
  • Mohamed HB, Abd El-Hamid BN, Fathalla D, et al. Current trends in pharmaceutical treatment of dry eye disease: a review. Eur J Pharmaceut Sci. 2022;175:106206. doi: 10.1016/j.ejps.2022.106206
  • Sheppard J, Shen Lee B, Periman LM. Dry eye disease: identification and therapeutic strategies for primary care clinicians and clinical specialists. Ann Med. 2023;55(1):241–252. doi: 10.1080/07853890.2022.2157477
  • Bron AJ, Tiffany JM, Yokoi N, et al. Using osmolarity to diagnose dry eye: a compartmental hypothesis and review of our assumptions. Adv Exp Med Biol. 2002;506:B:1087–1095.
  • Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15:438–510. doi: 10.1016/j.jtos.2017.05.011
  • Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. Int Rev Immunol. 2013;32(1):19–41. doi: 10.3109/08830185.2012.748052
  • Gipson IK, Argüeso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol. 2003;231:1–49.
  • Akpek EK, Amescua G, Farid M, et al. Dry eye syndrome preferred practice pattern®. Ophthalmol. 2019;126:286–P334. doi: 10.1016/j.ophtha.2018.10.023
  • Chan TCY, Chow SSW, Wan KHN, et al. Update on the association between dry eye disease and meibomian gland dysfunction. Hong Kong Med J. 2019;25:38–47. doi: 10.12809/hkmj187331
  • Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation. Eye Contact Lens. 2014;40(4):248. doi: 10.1097/ICL.0000000000000042
  • Tsubota K, Pflugfelder SC, Liu Z, et al. Defining dry eye from a clinical perspective. Int J Mol Sci. 2020;21(23):1–24. doi: 10.3390/ijms21239271
  • Buckley RJ. Assessment and management of dry eye disease. Eye. 2018;32(2):200. doi: 10.1038/eye.2017.289
  • Dogru M, Nakamura M, Shimazaki J, et al. Changing trends in the treatment of dry-eye disease. Expert Opin Investig Drugs. 2013;22(12):1581–1601. doi: 10.1517/13543784.2013.838557
  • Marshall LL, Roach JM. Treatment of dry eye disease. Consult Pharm. 2016;31(2):96–106. doi: 10.4140/TCP.n.2016.96
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15:276–283. doi: 10.1016/j.jtos.2017.05.008
  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15:575–628. doi: 10.1016/j.jtos.2017.05.006
  • Clayton JA, Longo DL. Dry eye. N Engl J Med. 2018;378:2212–2223. doi: 10.1056/NEJMra1407936
  • Yang CQ, Sun W, Gu YS. A clinical study of the efficacy of topical corticosteroids on dry eye. J Zhejiang Univ Sci B. 2006;7:675–678. doi: 10.1631/jzus.2006.B0675
  • Pan Q, Angelina A, Marrone M, et al. Autologous serum eye drops for dry eye. Cochrane Database Syst Rev. 2017 Feb 28;2017(2). Epub ahead of print. doi: 10.1002/14651858.CD009327.PUB3
  • Macsai MS. The role of omega-3 dietary supplementation in blepharitis and meibomian gland dysfunction (an AOS thesis). Trans Am Ophthalmol Soc. 2008;106:336.
  • Holland EJ, Luchs J, Karpecki PM, et al. Lifitegrast for the treatment of dry eye disease: results of a phase III, randomized, double-masked, placebo-controlled trial (OPUS-3). Ophthalmol. 2017;124(1):53–60. doi: 10.1016/j.ophtha.2016.09.025
  • Donnenfeld ED, Karpecki PM, Majmudar PA, et al. Safety of lifitegrast ophthalmic solution 5.0% in patients with dry eye disease: a 1-year, multicenter, randomized, placebo-controlled study. Cornea. 2016;35(6):741–748. doi: 10.1097/ICO.0000000000000803
  • Holland E, Nichols K, Foulks G, et al. Efficacy and safety of KPI-121 0.25% for short term relief in dry eye (STRIDE). American Society of Cataract and Refractive Surgery Virtual Annual Meeting; 2020 May 16-17; Virtual Meeting.
  • Wirta DL, Torkildsen GL, Moreira HR, et al. A clinical phase II study to assess efficacy, safety, and tolerability of waterfree cyclosporine formulation for treatment of dry eye disease. Ophthalmology. 2019;126(6):792–800. doi: 10.1016/j.ophtha.2019.01.024
  • Sheppard JD, Wirta DL, McLaurin E, et al. A water-free 0.1% cyclosporine a solution for treatment of dry eye disease: results of the randomized phase 2B/3 ESSENCE study. Cornea. 2021;40(10):1290–1297. doi: 10.1097/ICO.0000000000002633
  • Wirta D, Torkildsen GL, Boehmer B, et al. ONSET-1 phase 2b randomized trial to evaluate the safety and efficacy of OC-01 (Varenicline solution) nasal spray on signs and symptoms of dry eye disease. Cornea. 2022;41(10):1207–1216. doi: 10.1097/ICO.0000000000002941
  • Wirta D, Vollmer P, Paauw J, et al. Efficacy and safety of OC-01 (Varenicline solution) nasal spray on signs and symptoms of dry eye disease: the ONSET-2 phase 3 randomized trial. Ophthalmology. 2022;129(4):379–387. doi: 10.1016/j.ophtha.2021.11.004
  • Quiroz-Mercado H, Hernandez-Quintela E, Chiu KH, et al. A phase II randomized trial to evaluate the long-term (12-week) efficacy and safety of OC-01 (varenicline solution) nasal spray for dry eye disease: the MYSTIC study. Ocul Surf. 2022;24:15–21. doi: 10.1016/j.jtos.2021.12.007
  • Peng W, Chen RX, Dai H, et al. Efficacy, safety, and tolerability of a novel cyclosporine, a formulation for dry eye disease: a multicenter phase II clinical study. Clin Ther. 2021;43:613–628. doi: 10.1016/j.clinthera.2020.12.023
  • Peng W, Jiang X, Zhu L, et al. Cyclosporine a (0.05%) ophthalmic gel in the treatment of dry eye disease: a multicenter, randomized, double-masked, phase III, COSMO trial. Drug Des Devel Ther. 2022;16:3183–3194. doi: 10.2147/DDDT.S370559
  • Leonardi A, Van Setten G, Amrane M, et al. Efficacy and safety of 0.1% cyclosporine a cationic emulsion in the treatment of severe dry eye disease: a multicenter randomized trial. Eur J Ophthalmol. 2016;26(4):287–296. doi: 10.5301/ejo.5000779
  • Baudouin C, De La Maza MS, Amrane M, et al. One-year efficacy and safety of 0.1% cyclosporine a cationic emulsion in the treatment of severe dry eye disease. Eur J Ophthalmol. 2017;27(6):678–685. doi: 10.5301/ejo.5001002
  • Dong Y, Wang S, Cong L, et al. TNF-α inhibitor tanfanercept (HBM9036) improves signs and symptoms of dry eye in a phase 2 trial in the controlled adverse environment in China. Int Ophthalmol. 2022;42(8):2459. doi: 10.1007/s10792-022-02245-1
  • Sosne G, Dunn SP, Kim C. Thymosin β4 significantly improves signs and symptoms of severe dry eye in a phase 2 randomized trial. Cornea. 2015;34(5):491–496. doi: 10.1097/ICO.0000000000000379
  • Clark D, Sheppard J, Brady TC. A randomized double-masked phase 2a trial to evaluate activity and safety of topical ocular reproxalap, a novel RASP inhibitor, in dry eye disease. J Ocul Pharmacol Ther. 2021;37(4):193–199. doi: 10.1089/jop.2020.0087
  • Clark D, Tauber J, Sheppard J, et al. Early onset and broad activity of reproxalap in a randomized, double-masked, vehicle-controlled phase 2b trial in dry eye disease. Am J Ophthalmol. 2021;226:22–31. doi: 10.1016/j.ajo.2021.01.011
  • Taylor M, Ousler G, Torkildsen G, et al. A phase 2 randomized, double-masked, placebo-controlled study of novel nonsystemic kinase inhibitor TOP1630 for the treatment of dry eye disease. Clin Ophthalmol. 2019;13:261–275. doi: 10.2147/OPTH.S189039
  • Sall K, Foulks G, Pflugfelder SC, et al. A phase 1/2a study of ALY688 ophthalmic solution in dry eye subjects. Invest Ophthalmol Vis Sci. 2023;64:3959–3959.
  • Takamura E, Tsubota K, Watanabe H, et al. A randomised, double-masked comparison study of diquafosol versus sodium hyaluronate ophthalmic solutions in dry eye patients. Br J Ophthalmol. 2012;96(10):1310–1315. doi: 10.1136/bjophthalmol-2011-301448
  • Kinoshita S, Awamura S, Oshiden K, et al. Rebamipide (OPC-12759) in the treatment of dry eye: a randomized, double-masked, multicenter, placebo-controlled phase II study. Ophthalmol. 2012;119(12):2471–2478. doi: 10.1016/j.ophtha.2012.06.052
  • Meerovitch K, Torkildsen G, Lonsdale J, et al. Safety and efficacy of MIM-D3 ophthalmic solutions in a randomized, placebo-controlled phase 2 clinical trial in patients with dry eye. Clin Ophthalmol. 2013;7:1275. doi: 10.2147/OPTH.S44688
  • Petrov A, Perekhvatova N, Skulachev M, et al. SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model. Adv Ther. 2016;33(1):96–115. doi: 10.1007/s12325-015-0274-5
  • Wirta DL, Senchyna M, Lewis AE, et al. A randomized, vehicle-controlled, phase 2b study of two concentrations of the TRPM8 receptor agonist AR-15512 in the treatment of dry eye disease (COMET-1). Ocul Surf. 2022;26:166–173. doi: 10.1016/j.jtos.2022.08.003
  • Benitez-Del-Castillo JM, Moreno-Montañés J, Jiménez-Alfaro I, et al. Safety and efficacy clinical trials for SYL1001, a novel short interfering RNA for the treatment of dry eye disease. Invest Ophthalmol Vis Sci. 2016;57(14):6447–6454. doi: 10.1167/iovs.16-20303
  • Celebi ARC, Ulusoy C, Mirza GE. The efficacy of autologous serum eye drops for severe dry eye syndrome: a randomized double-blind crossover study. Graefes Arch Clin Exp Ophthalmol. 2014;252(4):619–626. doi: 10.1007/s00417-014-2599-1
  • Avila MY, Igua AM, Mora AM. Randomised, prospective clinical trial of platelet-rich plasma injection in the management of severe dry eye. Br J Ophthalmol. 2018;103:648–653. doi: 10.1136/bjophthalmol-2018-312072
  • Pérez ML, Barreales S, Sabater-Cruz N, et al. Amniotic membrane extract eye drops: a new approach to severe ocular surface pathologies. Cell Tissue Bank. 2022;23(3):473–481. doi: 10.1007/s10561-021-09962-4
  • Arita R, Fukuoka S. Efficacy of azithromycin eyedrops for individuals with meibomian gland dysfunction-associated posterior blepharitis. Eye Contact Lens. 2021;47:54–59. doi: 10.1097/ICL.0000000000000729
  • Satitpitakul V, Ratanawongphaibul K, Kasetsuwan N, et al. Efficacy of azithromycin 1.5% eyedrops vs oral doxycycline in meibomian gland dysfunction: a randomized trial. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1289–1294. doi: 10.1007/s00417-019-04322-1
  • Yoo SE, Lee DC, Chang MH. The effect of low-dose doxycycline therapy in chronic meibomian gland dysfunction. Korean J Ophthalmol. 2005;19(4):258–263. doi: 10.3341/kjo.2005.19.4.258
  • Lollett IV, Galor A. Dry eye syndrome: developments and lifitegrast in perspective. Clin Ophthalmol. 2018;12:125–139. doi: 10.2147/OPTH.S126668
  • Semba CP, Torkildsen GL, Lonsdale JD, et al. A phase 2 randomized, double-masked, placebo-controlled study of a novel integrin antagonist (SAR 1118) for the treatment of dry eye. Am J Ophthalmol. 2012;153(6):1050–1060.e1. doi: 10.1016/j.ajo.2011.11.003
  • Sheppard JD, Torkildsen GL, Lonsdale JD, et al. Lifitegrast ophthalmic solution 5.0% for treatment of dry eye disease: results of the OPUS-1 phase 3 study. Ophthalmology. 2014;121(2):475–483. doi: 10.1016/j.ophtha.2013.09.015
  • Tauber J, Karpecki P, Latkany R, et al. Lifitegrast ophthalmic solution 5.0% versus placebo for treatment of dry eye disease: results of the randomized phase III OPUS-2 study. Ophthalmology. 2015;122:2423–2431. doi: 10.1016/j.ophtha.2015.08.001
  • Bodor N, Loftsson T, Wu W. Metabolism, distribution, and transdermal permeation of a soft corticosteroid, loteprednol etabonate. Pharm Res. 1992;9:1275–1278. doi: 10.1023/A:1015849132396
  • Popov A. Mucus-penetrating particles and the role of ocular mucus as a barrier to micro- and Nanosuspensions. J Ocul Pharmacol Ther. 2020;36(6):366–375. doi: 10.1089/jop.2020.0022
  • Gupta PK, Venkateswaran N. The role of KPI-121 0.25% in the treatment of dry eye disease: penetrating the mucus barrier to treat periodic flares. Ther Adv Ophthalmol. 2021;13:251584142110127. doi: 10.1177/25158414211012797
  • Efficacy and safety of KPI-121 0.25% for short term relief in dry eye (STRIDE). [cited 2023 Aug 23]. Available from: https://ascrs.confex.com/ascrs/20am/meetingapp.cgi/Paper/71273
  • Pflugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–457. doi: 10.1016/j.ajo.2004.04.052
  • Barabino S, Montaldo E, Corsi E, et al. The effect of tapered small dose steroidal treatment on symptoms, clinical signs, and ocular surface inflammation in patients with dry eye syndrome. Invest Ophthalmol Vis Sci. 2011;52:3826–3826.
  • Schultz C. Safety and efficacy of cyclosporine in the treatment of chronic dry eye. Ophthalmol Eye Dis. 2014;6:OED.S16067. doi: 10.4137/OED.S16067
  • Kymionis GD, Bouzoukis DI, Diakonis VF, et al. Treatment of chronic dry eye: focus on cyclosporine. Clin Ophthalmol. 2008;2:829. doi: 10.2147/OPTH.S1409
  • Perry HD, Solomon R, Donnenfeld ED, et al. Evaluation of topical cyclosporine for the treatment of dry eye disease. Arch Ophthalmol. 2008;126:1046–1050. doi: 10.1001/archopht.126.8.1046
  • de Paiva CS, Pflugfelder SC, Ng SM, et al. Topical cyclosporine a therapy for dry eye syndrome. Cochrane Database Syst Rev. 2019 Sep 13;9. Epub ahead of print. doi: 10.1002/14651858.CD010051.PUB2
  • Periman LM, Mah FS, Karpecki PM. A review of the mechanism of action of cyclosporine A: the role of cyclosporine a in dry eye disease and recent formulation developments. Clin Ophthalmol. 2020;14:4187–4200. doi: 10.2147/OPTH.S279051
  • Lallemand F, Felt-Baeyens O, Besseghir K, et al. Cyclosporine a delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56(3):307–318. doi: 10.1016/S0939-6411(03)00138-3
  • Sheppard J, Kannarr S, Luchs J, et al. Efficacy and safety of OTX-101, a novel nanomicellar formulation of cyclosporine A, for the treatment of Keratoconjunctivitis Sicca: pooled analysis of a phase 2b/3 and phase 3 study. Eye Contact Lens. 2020;46(Suppl 1):S14–S19. doi: 10.1097/ICL.0000000000000636
  • Dutescu RM, Panfil C, Merkel OM, et al. Semifluorinated alkanes as a liquid drug carrier system for topical ocular drug delivery. Eur J Pharm Biopharm. 2014;88(1):123–128. doi: 10.1016/j.ejpb.2014.05.009
  • Agarwal P, Scherer D, Günther B, et al. Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. Int J Pharm. 2018;538(1–2):119–129. doi: 10.1016/j.ijpharm.2018.01.019
  • Zitko KL, Ladd L, Dougherty TS. Intranasal varenicline: review of a novel formulation for the treatment of dry eye disease. J Pharm Pract. 2022. Epub ahead of print. doi: 10.1177/08971900221108725.
  • Frampton JE. Varenicline solution nasal spray: a review in dry eye disease. Drugs. 2022;82(14):1481–1488. doi: 10.1007/s40265-022-01782-4
  • Tauber J, Wirta DL, Sall K, et al. A randomized clinical study (SEECASE) to assess efficacy, safety, and tolerability of NOV03 for treatment of dry eye disease. Cornea. 2021;40(9):1132–1140. doi: 10.1097/ICO.0000000000002622
  • Tauber J, Berdy GJ, Wirta DL, et al. NOV03 for dry eye disease associated with meibomian gland dysfunction: results of the randomized phase 3 GOBI study. Ophthalmology. 2023 May;130(5):516–524. Epub ahead of print. doi: 10.1016/J.OPHTHA.2022.12.021
  • Sheppard JD, Kurata F, Epitropoulos AT, et al. NOV03 for signs and symptoms of dry eye disease associated with meibomian gland dysfunction: the randomized phase 3 MOJAVE study. Am J Ophthalmol. 2023 Mar 20;252. Epub ahead of print. doi: 10.1016/J.AJO.2023.03.008.
  • Daull P, Lallemand F, Philips B, et al. Distribution of cyclosporine a in ocular tissues after topical administration of cyclosporine a cationic emulsions to pigmented rabbits. Cornea. 2013;32(3):345–354. doi: 10.1097/ICO.0b013e31825e83f4
  • Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res. 2002;21(1):15–34. doi: 10.1016/S1350-9462(01)00017-9
  • Lallemand F, Daull P, Benita S, et al. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:1–16. doi: 10.1155/2012/604204
  • Ikervis | European medicines agency. [cited 2023 Jul 3]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/ikervis
  • Baudouin C, Figueiredo FC, Messmer EM, et al. A randomized study of the efficacy and safety of 0.1% cyclosporine a cationic emulsion in treatment of moderate to severe dry eye. Eur J Ophthalmol. 2017;27(5):520–530. doi: 10.5301/ejo.5000952
  • Bremond-Gignac D, Doan S, Amrane M, et al. Twelve-month results of cyclosporine a cationic emulsion in a randomized study in patients with pediatric vernal keratoconjunctivitis. Am J Ophthalmol. 2020;212:116–126. doi: 10.1016/j.ajo.2019.11.020
  • Leonardi A, Doan S, Amrane M, et al. A randomized, controlled trial of cyclosporine a cationic emulsion in pediatric vernal keratoconjunctivitis: the VEKTIS study. Ophthalmol. 2019;126(5):671–681. doi: 10.1016/j.ophtha.2018.12.027
  • Sheha H, Tighe S, Hashem O, et al. Update on Cenegermin eye drops in the treatment of neurotrophic keratitis. Clin Ophthalmol. 2019;13:1973–1980. doi: 10.2147/OPTH.S185184
  • Aloe L, Rocco M, Balzamino B, et al. Nerve growth factor: a focus on neuroscience and therapy. Curr Neuropharmacol. 2015;13(3):294–303. doi: 10.2174/1570159X13666150403231920
  • Lambiase A, Rama P, Bonini S, et al. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. N Engl J Med. 1998;338:372–373. doi: 10.1056/NEJM199804233381702
  • Lambiase A, Sacchetti M, Bonini S. Nerve growth factor therapy for corneal disease. Curr Opin Ophthalmol. 2012;23(4):296–302. doi: 10.1097/ICU.0b013e3283543b61
  • Coco G, Piccotti G, Romano V, et al. Cenegermin for the treatment of dry eye disease. Drugs Today (Barc). 2023;59:113–123.
  • Sacchetti M, Lambiase A, Schmidl D, et al. Effect of recombinant human nerve growth factor eye drops in patients with dry eye: a phase IIa, open label, multiple-dose study. Br J Ophthalmol. 2020;104:127–135. doi: 10.1136/bjophthalmol-2018-312470
  • Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev. 2014;25:453–472. doi: 10.1016/j.cytogfr.2014.07.016
  • Lee HB, Choi HJ, Cho SM, et al. Efficacy of HL036 versus cyclosporine a in the treatment of naturally occurring canine keratoconjunctivitis sicca. Curr Eye Res. 2018;43(7):889–895. doi: 10.1080/02713683.2018.1461909
  • Sosne G, Xu L, Prach L, et al. Thymosin beta 4 stimulates laminin-5 production independent of TGF-beta. Exp Cell Res. 2004;293(1):175–183. doi: 10.1016/j.yexcr.2003.09.022
  • Sosne G, Qiu P, Christopherson PL, et al. Thymosin beta 4 suppression of corneal NFkappaB: a potential anti-inflammatory pathway. Exp Eye Res. 2007;84:663–669. doi: 10.1016/j.exer.2006.12.004
  • Sosne G, Hafeez S, Greenberry AL, et al. Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res. 2002;24:268–273. doi: 10.1076/ceyr.24.4.268.8414
  • Dunn SP, Heidemann DG, Chow CYC, et al. Treatment of chronic nonhealing neurotrophic corneal epithelial defects with thymosin beta4. Ann N Y Acad Sci. 2010;1194:199–206. doi: 10.1111/j.1749-6632.2010.05471.x
  • Sosne G, Ousler GW. Thymosin beta 4 ophthalmic solution for dry eye: a randomized, placebo-controlled, phase II clinical trial conducted using the controlled adverse environment (CAETM) model. Clin Ophthalmol. 2015;9:877–884. doi: 10.2147/OPTH.S80954
  • Zhai Y, Zheng X, Mao Y, et al. Recombinant human thymosin β4 (rhTβ4) modulates the anti-inflammatory responses to alleviate benzalkonium chloride (BAC)-induced dry eye disease. IJMS. 2022 May 1;23(10):5458. Epub ahead of print. doi: 10.3390/IJMS23105458
  • Kovalchin J, King B, Masci A, et al. Preclinical development of EBI-005: an IL-1 receptor-1 inhibitor for the topical ocular treatment of ocular surface inflammatory diseases. Eye Contact Lens. 2018;44:170–181. doi: 10.1097/ICL.0000000000000414
  • Solomon A, Dursun D, Liu Z, et al. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci. 2001;42:2283–2292.
  • Goldstein MH, Martel JR, Sall K, et al. Multicenter study of a novel topical interleukin-1 receptor inhibitor, Isunakinra, in subjects with moderate to severe dry eye disease. Eye Contact Lens. 2017;43:287–296. doi: 10.1097/ICL.0000000000000276
  • Higdon A, Diers AR, Oh JY, et al. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J. 2012;442(3):453. doi: 10.1042/BJ20111752
  • Kalariya NM, Ramana KV, Srivastava SK, et al. Carotenoid derived aldehydes-induced oxidative stress causes apoptotic cell death in human retinal pigment epithelial cells. Exp Eye Res. 2008;86:70–80. doi: 10.1016/j.exer.2007.09.010
  • Kauppinen A, Niskanen H, Suuronen T, et al. Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells–implications for age-related macular degeneration (AMD). Immunol Lett. 2012;147:29–33. doi: 10.1016/j.imlet.2012.05.005
  • Sapkota M, DeVasure JM, Kharbanda KK, et al. Malondialdehyde-acetaldehyde (MAA) adducted surfactant protein induced lung inflammation is mediated through scavenger receptor a (SR-A1). Respir Res. 2017 Feb 13;18. Epub ahead of print. doi: 10.1186/S12931-017-0517-X
  • Sandikci R, Türkmen S, Güvenen G, et al. Lipid peroxidation and antioxidant defence system in patients with active or inactive Behçet’s disease. Acta Derm Venereol. 2003;83(5):342–346. doi: 10.1080/00015550310003782
  • Čejkova J, Ardan T, Jirsová K, et al. The role of conjunctival epithelial cell xanthine oxidoreductase/xanthine oxidase in oxidative reactions on the ocular surface of dry eye patients with Sjögren’s syndrome. Histol Histopathol. 2007;22:997–1003. doi: 10.14670/HH-22.997
  • Balci M, Şahin Ş, Mutlu FM, et al. Investigation of oxidative stress in pterygium tissue. Mol Vis. 2011;17:443.
  • Turk A, Aykut M, Akyol N, et al. Serum anti-carbonic anhydrase antibodies and oxidant-antioxidant balance in patients with acute anterior uveitis. Ocul Immunol Inflamm. 2014;22:127–132. doi: 10.3109/09273948.2013.830753
  • Hagan S, Fyfe MCT, Ofori-Frimpong B, et al. Narrow spectrum kinase inhibitors demonstrate promise for the treatment of dry eye disease and other ocular inflammatory disorders. Invest Ophthalmol Vis Sci. 2018;59(3):1443–1453. doi: 10.1167/iovs.17-23479
  • Koh S, Maeda N, Ikeda C, et al. Effect of diquafosol ophthalmic solution on the optical quality of the eyes in patients with aqueous-deficient dry eye. Acta Ophthalmol. 2014;92:e671–e675. doi: 10.1111/aos.12443
  • Matsumoto Y, Ohashi Y, Watanabe H, et al. Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese phase 2 clinical trial. Ophthalmol. 2012;119(10):1954–1960. doi: 10.1016/j.ophtha.2012.04.010
  • Gong L, Sun X, Ma Z, et al. A randomised, parallel-group comparison study of diquafosol ophthalmic solution in patients with dry eye in China and Singapore. Br J Ophthalmol. 2015;99(7):903–908. doi: 10.1136/bjophthalmol-2014-306084
  • Liu S, Yang G, Li Q, et al. Safety and efficacy of topical diquafosol for the treatment of dry eye disease: an updated meta-analysis of randomized controlled trials. Indian J Ophthalmol. 2023;71(4):1304–1315. doi: 10.4103/IJO.IJO_268_23
  • Sun X, Liu L, Liu C. Topical diquafosol versus hyaluronic acid for the treatment of dry eye disease: a meta-analysis of randomized controlled trials. Graefes Arch Clin Exp Ophthalmol. 2023. Epub ahead of print. doi: 10.1007/S00417-023-06083-4
  • Kinoshita S, Oshiden K, Awamura S, et al. A randomized, multicenter phase 3 study comparing 2% rebamipide (OPC-12759) with 0.1% sodium hyaluronate in the treatment of dry eye. Ophthalmology. 2013;120(6):1158–1165. doi: 10.1016/j.ophtha.2012.12.022
  • Munakata W, Liu Q, Shimoyama T, et al. Ecabet sodium attenuates reactive oxygen species produced by neutrophils after priming with bacterial lipopolysaccharides. Luminescence. 2003;18(6):330–333. doi: 10.1002/bio.745
  • Mito C, Tokushige H, Kida T, et al. Ecabet sodium promotes MUC5AC secretion in rabbit tears. Invest Ophthalmol Vis Sci. 2007;48:384–384.
  • Skulachev VP. Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem Biophys Res Commun. 2013;441(2):275–279. doi: 10.1016/j.bbrc.2013.10.063
  • Belmonte C, Nichols JJ, Cox SM, et al. TFOS DEWS II pain and sensation report. Ocul Surf. 2017;15:404–437. doi: 10.1016/j.jtos.2017.05.002
  • Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: from functional genomics to therapeutics. Adv Genet. 2005;54:115–142.
  • Pan Z, Wang Z, Yang H, et al. TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2011;52(1):485. doi: 10.1167/iovs.10-5801
  • Pan Z. Transient receptor potential (TRP) channels in the eye. Adv Ophthalmol. 2012 Mar 7. Epub ahead of print. doi: 10.5772/34598
  • Shtein RM, Shen JF, Kuo AN, et al. Autologous serum-based eye drops for treatment of ocular surface disease: a report by the American Academy of Ophthalmology. Ophthalmology. 2020;127(1):128–133. doi: 10.1016/j.ophtha.2019.08.018
  • Tsubota K, Goto E, Shimmura S, et al. Treatment of persistent corneal epithelial defect by autologous serum application. Ophthalmology. 1999;106(10):1984–1989. doi: 10.1016/S0161-6420(99)90412-8
  • Tsubota K, Goto E, Fujita H, et al. Treatment of dry eye by autologous serum application in Sjögren’s syndrome. Br J Ophthalmol. 1999;83:390–395. doi: 10.1136/bjo.83.4.390
  • Geerling G, MacLennan S, Hartwig D. Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol. 2004;88:1467–1474. doi: 10.1136/bjo.2004.044347
  • Ralph RA, Doane MG, Dohlman CH. Clinical experience with a mobile ocular perfusion pump. Arch Ophthalmol. 1975;93(10):1039–1043. doi: 10.1001/archopht.1975.01010020815015
  • Pan Q, Angelina A, Marrone M, et al. Autologous serum eye drops for dry eye. Cochrane Database Syst Rev. 2017 Feb 28;2017. Epub ahead of print. doi: 10.1002/14651858.CD009327.PUB3
  • Kumari N, Kusumesh R, Kumari R, et al. Comparative evaluation of effectiveness of twenty versus fifty percent autologous serum eye drops in treatment of dry eye. Indian J Ophthalmol. 2023;71(4):1603–1607. doi: 10.4103/IJO.IJO_2684_22
  • Alio JL, Rodriguez AE, Ferreira-Oliveira R, et al. Treatment of dry eye disease with autologous Platelet-rich plasma: a prospective, interventional, non-randomized study. Ophthalmol Ther. 2017;6(2):285–293. doi: 10.1007/s40123-017-0100-z
  • Wei Y, Asbell PA. The core mechanism of dry eye disease (DED) is inflammation. Eye Contact Lens. 2014;40:248. doi: 10.1097/ICL.0000000000000042
  • Bourgeois M, Loisel F, Obert L, et al. Can the amniotic membrane be used to treat peripheral nerve defects? A review of literature. Hand Surg Rehabil. 2019;38:223–232. doi: 10.1016/j.hansur.2019.05.006
  • Jeng BH, Hamrah P, Kirshner ZZ, et al. Exploratory phase II multicenter, open-label, clinical trial of ST266, a novel secretome for treatment of persistent corneal epithelial defects. Trans Vis Sci Tech. 2022 Jan 1;11(1):8. Epub ahead of print. doi: 10.1167/TVST.11.1.8
  • Murri MS, Moshirfar M, Birdsong OC, et al. Amniotic membrane extract and eye drops: a review of literature and clinical application. Clin Ophthalmol. 2018;12:1105. doi: 10.2147/OPTH.S165553
  • Zhang L, Su Z, Zhang Z, et al. Effects of azithromycin on gene expression profiles of proinflammatory and anti-inflammatory mediators in the eyelid margin and conjunctiva of patients with meibomian gland disease. JAMA Ophthalmol. 2015;133(10):1117–1123. doi: 10.1001/jamaophthalmol.2015.2326
  • Luchs J. Efficacy of topical azithromycin ophthalmic solution 1% in the treatment of posterior blepharitis. Adv Ther. 2008;25(9):858–870. doi: 10.1007/s12325-008-0096-9
  • Kagkelaris KA, Makri OE, Georgakopoulos CD, et al. An eye for azithromycin: review of the literature. Ther Adv Ophthalmol. 2018;10:251584141878362. doi: 10.1177/2515841418783622
  • Liu Y, Kam WR, Ding J, et al. Can tetracycline antibiotics duplicate the ability of azithromycin to stimulate human meibomian gland epithelial cell differentiation? Cornea. 2015;34(3):342–346. doi: 10.1097/ICO.0000000000000351
  • Tao T, Tao L. Systematic review and meta-analysis of treating meibomian gland dysfunction with azithromycin. Eye. 2020;34:1797–1808. doi: 10.1038/s41433-020-0876-2
  • Upaphong P, Tangmonkongvoragul C, Phinyo P. Pulsed oral azithromycin vs 6-week oral doxycycline for moderate to severe meibomian gland dysfunction: a randomized clinical trial. JAMA Ophthalmol. 2023 Mar 23;141(5):423. Epub ahead of print. doi: 10.1001/JAMAOPHTHALMOL.2023.0302
  • Heim KC, Angers P, Léonhart S, et al. Anti-inflammatory and neuroactive properties of selected fruit extracts. J Med Food. 2012;15(9):851–854. doi: 10.1089/jmf.2011.0265
  • Remsberg CM, Yáñez JA, Ohgami Y, et al. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res. 2008;22(2):169–179. doi: 10.1002/ptr.2277
  • Deng R, Hua X, Li J, et al. Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. PLoS One. 2015;10(5):126561. doi: 10.1371/journal.pone.0126561
  • Wakamatsu TH, Dogru M, Matsumoto Y, et al. Evaluation of lipid oxidative stress status in sjögren syndrome patients. Invest Ophthalmol Vis Sci. 2013;54(1):201–210. doi: 10.1167/iovs.12-10325
  • Li J, Deng R, Hua X, et al. Blueberry component pterostilbene protects corneal epithelial cells from inflammation via anti-oxidative pathway. Sci Rep. 2016 Jan 14;6. Epub ahead of print. doi: 10.1038/SREP19408.
  • James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000;71(1):343S–348S. Epub ahead of print. doi: 10.1093/AJCN/71.1.343S
  • Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol. 2010;177(4):1576–1591. doi: 10.2353/ajpath.2010.100322
  • Hussain M, Shtein RM, Pistilli M, et al. The dry eye assessment and management (DREAM) extension study – a randomized clinical trial of withdrawal of supplementation with omega-3 fatty acid in patients with dry eye disease. Ocul Surf. 2020;18(1):47. doi: 10.1016/j.jtos.2019.08.002
  • Giannaccare G, Pellegrini M, Sebastiani S, et al. Efficacy of omega-3 fatty acid supplementation for treatment of dry eye disease: a meta-analysis of randomized clinical trials. Cornea. 2019;38(5):565–573. doi: 10.1097/ICO.0000000000001884
  • Pellegrini M, Senni C, Bernabei F, et al. The role of nutrition and nutritional supplements in ocular surface diseases. Nutrients. 2020 Apr 1;12(4):952. Epub ahead of print. doi: 10.3390/NU12040952
  • Nagai N, Otake H. Novel drug delivery systems for the management of dry eye. Adv Drug Deliv Rev. 2022 Dec 1;191. Epub ahead of print. doi: 10.1016/J.ADDR.2022.114582
  • Borgia A, Raimondi R, Fossati G, et al. Device-based therapies as a boost of conventional treatment in dry eye disease. Expert Rev Ophthalmol. 2022;17(6):387–393. doi: 10.1080/17469899.2022.2147928

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.