180
Views
0
CrossRef citations to date
0
Altmetric
Review

The landscape of pathophysiology guided therapeutic strategies for gout treatment

, &
Pages 1993-2003 | Received 12 Oct 2023, Accepted 30 Nov 2023, Published online: 05 Dec 2023

References

  • Grassi W, De Angelis R. Clinical features of gout. Reumatismo. 2012;63(4):238–245. doi:10.4081/reumatismo.2011.238
  • Taylor WJ, Fransen J, Jansen TL, et al. Study for updated gout classification criteria: identification of features to classify gout. Arthritis Care Res (Hoboken). 2015;67(9):1304–1315. doi: 10.1002/acr.22585
  • Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16(7):380–390. doi:10.1038/s41584-020-0441-1
  • Roddy E, Choi HK. Epidemiology of gout. Rheum Dis Clin North Am. 2014;40(2):155–175. doi:10.1016/j.rdc.2014.01.001
  • Cabău G, Crișan T, Klück V, et al. Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol Rev. 2020;294(1):92–105.
  • Dalbeth N, Gosling A, Gaffo A, et al. Gout. Lancet. 2021;397(10287):1843–1855. doi: 10.1016/S0140-6736(21)00569-9
  • Shi Y, Mucsi AD, Ng G. Monosodium urate crystals in inflammation and immunity. Immunol Rev. 2010;233(1):203–217. doi:10.1111/j.0105-2896.2009.00851.x
  • Kingsbury SR, Conaghan PG, McDermott MF. The role of the NLRP3 inflammasome in gout. J Inflamm Res. 2011;4:39–49. doi:10.2147/JIR.S11330
  • Hari A, Zhang Y, Tu Z, et al. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci Rep. 2014;4(1):7281.
  • Mata R, Yao Y, Cao W, et al. The dynamic inflammatory tissue microenvironment: signality and disease therapy by biomaterials. Research (Wash D C). 2021;2021:4189516. doi:10.34133/2021/4189516
  • Amaral FA, Costa VV, Tavares LD, et al. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B(4) in a murine model of gout. Arthritis Rheum. 2012;64(2):474–84. doi: 10.1002/art.33355
  • Kydd AS, Seth R, Buchbinder R, et al. Urate-lowering therapy for the management of gout: a summary of 2 Cochrane reviews. J Rheumatol. 2014;92(Suppl. 92):33–41.
  • Stamp LK, Chapman PT. Urate-lowering therapy: current options and future prospects for elderly patients with gout. Drugs Aging. 2014;31(11):777–786. doi:10.1007/s40266-014-0214-0
  • Day RO, Kamel B, Kannangara DR, et al. Xanthine oxidoreductase and its inhibitors: relevance for gout. Clin Sci (Lond). 2016;130(23):2167–2180. doi:10.1042/CS20160010
  • Kydd AS, Seth R, Buchbinder R, et al. Uricosuric medications for chronic gout. Cochrane Database Syst Rev. 2014;11:CD010457. doi: 10.1002/14651858.CD010457.pub2
  • Garay RP, El-Gewely MR, Labaune JP, et al. Therapeutic perspectives on uricases for gout. Joint Bone Spine. 2012;79(3):237–242. doi:10.1016/j.jbspin.2012.01.004
  • van Durme CM, Wechalekar MD, Buchbinder R, et al. Non-steroidal anti-inflammatory drugs for acute gout. Cochrane Database Syst Rev. 2014;9:CD010120. doi: 10.1002/14651858.CD010120.pub2
  • Liu X, Sun D, Ma X, et al. Benefit-risk of corticosteroids in acute gout patients: An updated meta-analysis and economic evaluation. Steroids. 2017;128:89–94. doi:10.1016/j.steroids.2017.09.002
  • McKenzie BJ, Wechalekar MD, Johnston RV, et al. Colchicine for acute gout. Cochrane Database Syst Rev. 2021;8(8):CD006190. doi: 10.1002/14651858.CD006190.pub3
  • Jordan A, Gresser U. Side effects and interactions of the Xanthine oxidase inhibitor febuxostat. Pharmaceuticals (Basel). 2018;11(2):51. doi:10.3390/ph11020051
  • Vonkeman HE, van de Laar MA. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Semin Arthritis Rheum. 2010;39(4):294–312. doi:10.1016/j.semarthrit.2008.08.001
  • Fathallah-Shaykh SA, Cramer MT. Uric acid and the kidney. Pediatr Nephrol. 2014;29(6):999–1008. doi:10.1007/s00467-013-2549-x
  • Álvarez-Lario B, Macarrón-Vicente J. Uric acid and evolution. Rheumatology (Oxford). 2010;49(11):2010–2015. doi:10.1093/rheumatology/keq204
  • Li C, Hsieh MC, Chang SJ. Metabolic syndrome, diabetes, and hyperuricemia. Curr Opin Rheumatol. 2013;25(2):210–216. doi:10.1097/BOR.0b013e32835d951e
  • Yanai H, Adachi H, Hakoshima M, et al. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 2021;22(17):9221. doi: 10.3390/ijms22179221
  • Zhang S, Wang Y, Cheng J, et al. Hyperuricemia and cardiovascular disease. Curr Pharm Des. 2019;25(6):700–709. doi: 10.2174/1381612825666190408122557
  • Lioté F. Hyperuricemia and gout. Curr Rheumatol Rep. 2003;5(3):227–34. doi:10.1007/s11926-003-0072-y
  • Sansone A, Reisman Y, Jannini EA. Relationship between hyperuricemia with deposition and sexual dysfunction in males and females. J Endocrinol Invest. 2022;45(4):691–703. doi:10.1007/s40618-021-01719-w
  • Zhang WZ. Why does hyperuricemia not necessarily induce gout? Biomolecules. 2021;11(2):280. doi:10.3390/biom11020280
  • Martillo MA, Nazzal L, Crittenden DB. The crystallization of monosodium urate. Curr Rheumatol Rep. 2014;16(2):400. doi:10.1007/s11926-013-0400-9
  • Kanevets U, Sharma K, Dresser K, et al. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol. 2009;182(4):1912–1918. doi: 10.4049/jimmunol.0803777
  • Cabău G, Crișan TO, Klück V, et al. Urate‐induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol Rev. 2020;294(1):92–105. doi: 10.1111/imr.12833
  • So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017;13(11):639–647. doi:10.1038/nrrheum.2017.155
  • Du X, Zhang M, Zhou H, et al. Decoy nanozymes enable multitarget blockade of proinflammatory cascades for the treatment of multi-drug-resistant bacterial sepsis. Research (Wash D C). 2022;2022:9767643. doi: 10.34133/2022/9767643
  • Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol. 2018;30(11):511–528. doi:10.1093/intimm/dxy054
  • Martin WJ, Shaw O, Liu X, et al. Monosodium urate monohydrate crystal–recruited noninflammatory monocytes differentiate into M1-like proinflammatory macrophages in a peritoneal murine model of gout. Arthritis Rheum. 2011;63(5):1322–32. doi: 10.1002/art.30249
  • Nakayama M. Macrophage recognition of crystals and nanoparticles. Front Immunol. 2018;9:103. doi:10.3389/fimmu.2018.00103
  • Liu-Bryan R, Scott P, Sydlaske A, et al. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 2005;52(9):2936–46. doi: 10.1002/art.21238
  • Piancone F, Saresella M, Marventano I, et al. Monosodium urate crystals activate the inflammasome in primary progressive multiple sclerosis. Front Immunol. 2018;9:983. doi: 10.3389/fimmu.2018.00983
  • Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328
  • Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489. doi:10.1038/s41577-019-0165-0
  • Li X, Zhang P, Yin Z, et al. Caspase-1 and gasdermin D afford the optimal targets with distinct switching strategies in NLRP1b inflammasome-induced cell death. Research (Wash D C). 2022;9838341. doi: 10.34133/2022/9838341
  • Zheng Y, Sun W, Wang Z, et al. Activation of Pancreatic Acinar FXR protects against pancreatitis via Osgin1-mediated restoration of efficient autophagy. Research (Wash D C). 2022;2022:9784081. doi: 10.34133/2022/9784081
  • Sansonetti PJ, Phalipon A, Arondel J, et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 2000;12(5):581–90. doi: 10.1016/S1074-7613(00)80209-5
  • Fei Y, Zhang S, Han S, et al. The role of dihydroresveratrol in enhancing the synergistic effect of Ligilactobacillus salivarius Li01 and resveratrol in ameliorating colitis in mice. Research (Wash D C). 2022;2022:9863845. doi: 10.34133/2022/9863845
  • McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–2337. doi:10.1016/S0140-6736(17)31472-1
  • Dinarello CA. How interleukin-1β induces gouty arthritis. Arthritis Rheum. 2010;62(11):3140–3144. doi:10.1002/art.27663
  • Alberts BM, Bruce C, Basnayake K, et al. Secretion of IL-1β from monocytes in gout is redox Independent. Front Immunol. 2019;10:70. doi: 10.3389/fimmu.2019.00070
  • Mitroulis I, Kambas K, Ritis K. Neutrophils, IL-1β, and gout: is there a link? Semin. Semin Immunopathol. 2013;35(4):501–12. doi:10.1007/s00281-013-0361-0
  • Steiger S, Harper JL. Mechanisms of spontaneous resolution of acute gouty inflammation. Curr Rheumatol Rep. 2014;16(1):392. doi:10.1007/s11926-013-0392-5
  • Chen YH, Hsieh SC, Chen WY, et al. Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGFβ1, IL-10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3. Ann Rheum Dis. 2011;70(9):1655–63. doi: 10.1136/ard.2010.145821
  • Wu M, Tian Y, Wang Q, et al. Gout: a disease involved with complicated immunoinflammatory responses: a narrative review. Clin Rheumatol. 2020;39(10):2849–2859. doi: 10.1007/s10067-020-05090-8
  • Zhao K, Wang X, Zhao D, et al. lncRNA HITT inhibits lactate production by repressing PKM2 oligomerization to reduce tumor growth and macrophage polarization. Research (Wash D C). 2022;2022:9854904. doi: 10.34133/2022/9854904
  • Chen Y, Hu M, Wang L, et al. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090
  • Wang N, Liang H, Zen K. Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization Balance. Front Immunol. 2014;5:614. doi:10.3389/fimmu.2014.00614
  • Schauer C, Janko C, Munoz LE, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–517. doi: 10.1038/nm.3547
  • Schlesinger N. Treatment of chronic gouty arthritis: it is not just about urate-lowering therapy. Semin Arthritis Rheum. 2012;42(2):155–165. doi:10.1016/j.semarthrit.2012.03.010
  • Chhana A, Dalbeth N. The gouty tophus: a review. Curr Rheumatol Rep. 2015;17(3):19. doi:10.1007/s11926-014-0492-x
  • Chhana A, Callon KE, Pool B, et al. Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout. Ann Rheum Dis. 2011;70(9):1684–1691.
  • Chhana A, Pool B, Callon KE, et al. Monosodium urate crystals reduce osteocyte viability and indirectly promote a shift in osteocyte function towards a proinflammatory and proresorptive state. Arthritis Res Ther. 2018;20(1):208. doi: 10.1186/s13075-018-1704-y
  • Hwang HS, Yang CM, Park SJ, et al. Monosodium urate crystal-induced chondrocyte death via autophagic process. Int J Mol Sci. 2015;16(12):29265–29277. doi: 10.3390/ijms161226164
  • Chhana A, Callon KE, Pool B, et al. The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout. J Rheumatol. 2013;40(12):2067–2074. doi: 10.3899/jrheum.130708
  • Day RO, Kamel B, Kannangara DR, et al. Xanthine oxidoreductase and its inhibitors: relevance for gout. Clin Sci (Lond). 2016;130(23):2167–2180. doi: 10.1042/CS20160010
  • Vickneson K, George J. Xanthine Oxidoreductase Inhibitors. Handb Exp Pharmacol. 2021;264:205–228.
  • Proudman C, Lester SE, Gonzalez-Chica DA, et al. Gout, flares, and allopurinol use: a population-based study. Arthritis Res Ther. 2019;21(1):132. doi: 10.1186/s13075-019-1918-7
  • Orriss IR, Arnett TR, George J, et al. Allopurinol and oxypurinol promote osteoblast differentiation and increase bone formation. Exp Cell Res. 2016;342(2):166–174. doi: 10.1016/j.yexcr.2016.03.004
  • Day RO, Kannangara DR, Stocker SL, et al. Allopurinol: insights from studies of dose-response relationships. Expert Opin Drug Metab Toxicol. 2017;13(4):449–462. doi: 10.1080/17425255.2017.1269745
  • Stamp LK, Chapman PT, Palmer SC. Allopurinol and kidney function: an update. Joint Bone Spine. 2016;83(1):19–24. doi:10.1016/j.jbspin.2015.03.013
  • Bardin T, Richette P. The role of febuxostat in gout. Curr Opin Rheumatol. 2019;31(2):152–158. doi:10.1097/BOR.0000000000000573
  • Abeles AM, Pillinger MH. Febuxostat and the Black Box Blues. ACR Open Rheumatol. 2019;1(6):343–344. doi:10.1002/acr2.11047
  • Luo Z, Yu G, Han X, et al. Prediction of the pharmacokinetics and pharmacodynamics of topiroxostat in humans by integrating the physiologically based pharmacokinetic model with the drug-target residence time model. Biomed Pharmacother. 2020;121:109660. doi: 10.1016/j.biopha.2019.109660
  • Li X, Yan Z, Tian J, et al. Urate Transporter URAT1 in Hyperuricemia: New Insights from Hyperuricemic Models. Ann Clin Lab Sci. 2019;49(6):756–762.
  • Graessler J, Graessler A, Unger S, et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum. 2006;54(1):292–300. doi: 10.1002/art.21499
  • Azevedo VF, Kos IA, Vargas-Santos AB, et al. Benzbromarone in the treatment of gout. Adv Rheumatol. 2019;59(1):37. doi: 10.1186/s42358-019-0080-x
  • Lee MH, Graham GG, Williams KM, et al. A benefit-risk assessment of benzbromarone in the treatment of gout. Was its withdrawal from the market in the best interest of patients? Drug Saf. 2008;31(8):643–65. doi: 10.2165/00002018-200831080-00002
  • Miner JN, Tan PK, Hyndman D, et al. Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res Ther. 2016;18(1):214. doi: 10.1186/s13075-016-1107-x
  • Hoy SM. Lesinurad: First Global Approval. Drugs. 2016;76(4):509–16. doi:10.1007/s40265-016-0550-y
  • Piani F, Agnoletti D, Borghi C. Advances in pharmacotherapies for hyperuricemia. Expert Opin Pharmacother. 2023;24(6):737–745. doi:10.1080/14656566.2023.2197591
  • Shen Z, Gillen M, Miner JN, et al. Pharmacokinetics, pharmacodynamics, and tolerability of verinurad, a selective uric acid reabsorption inhibitor, in healthy adult male subjects. Drug Des Devel Ther. 2017;11:2077–2086. doi: 10.2147/DDDT.S140658
  • Stack AG, Dronamraju N, Parkinson J, et al. Effect of intensive urate lowering with combined verinurad and febuxostat on albuminuria in patients with type 2 diabetes: a randomized trial. Am J Kidney Dis. 2021;77(4):481–489. doi: 10.1053/j.ajkd.2020.09.009
  • Edwards NL, So A. Emerging therapies for gout. Rheumatol Dis Clin N Am. 2014;40(2):375–387. doi:10.1016/j.rdc.2014.01.013
  • Poiley J, Steinberg AS, Choi YJ, et al. A randomized, double-blind, active- and placebo-controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout. Arthritis & Rheumat. 2016;68(8):2027–2034. doi: 10.1002/art.39684
  • Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989;86(23):9412–9416. doi: 10.1073/pnas.86.23.9412
  • Dabbagh F, Ghoshoon MB, Hemmati S, et al. Engineering Human urate oxidase: towards reactivating it as an important therapeutic enzyme. Curr Pharm Biotechnol. 2015;17(2):141–146. doi: 10.2174/1389201016666150907113055
  • Yeldandi AV, Wang XD, Alvares K, et al. Human urate oxidase gene: cloning and partial sequence analysis reveal a stop codon within the fifth exon. Biochem Biophys Res Commun. 1990;171(2):641–646. doi: 10.1016/0006-291X(90)91194-W
  • Johnson RJ, Choi HK, Yeo AE, et al. Pegloticase treatment significantly decreases Blood pressure in patients with chronic gout. Hypertension. 2019;74(1):95–101. doi: 10.1161/HYPERTENSIONAHA.119.12727
  • Keenan RT, Botson JK, Masri KR, et al. The effect of immunomodulators on the efficacy and tolerability of pegloticase: a systematic review. Semin Arthritis Rheum. 2021;51(2):347–352. doi: 10.1016/j.semarthrit.2021.01.005
  • Ravandi F, Gandhi V. Novel purine nucleoside analogues for T-cell-lineage acute lymphoblastic leukaemia and lymphoma. Expert Opin Investig Drugs. 2006;15(12):1601–1613. doi:10.1517/13543784.15.12.1601
  • Fitz-Patrick D, Drummond W, Pappas J, et al. Effects of a purine nucleoside phosphorylase inhibitor, Bcx4208, on the serum uric acid concentrations in patients with gout[abstract]. Arthritis & Rheumatism. 2010;62(Suppl 10):150.
  • Hollister A, Dobo S, Maetzel A, et al. FRI0380 Long-term safety of BCX4208 added to allopurinol in the chronic management of GOUT: results of a phase 2 24-week blinded safety extension and vaccine challenge study. Ann Rheum Dis. 2013;71(Suppl 3):442.3–443.
  • Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother. 2020;130:110542. doi:10.1016/j.biopha.2020.110542
  • Wang L, Feng J, Deng Y, et al. Ccaat/enhancer-binding proteins in fibrosis: complex roles beyond conventional understanding. Research (Wash D C). 2022;2022:9891689. doi: 10.34133/2022/9891689
  • Isazadeh M, Amandadi M, Haghdoust F, et al. Split-luciferase complementary assay of NLRP3 PYD-PYD interaction indicates inflammasome formation during inflammation. Anal Biochem. 2022;638:114510. doi: 10.1016/j.ab.2021.114510
  • Yang G, Lee HE, Moon SJ, et al. Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis & Rheumat. 2020;72(7):1192–1202. doi: 10.1002/art.41245
  • Zhang X, Hu L, Xu S, et al. Erianin: a direct NLRP3 inhibitor with remarkable anti-inflammatory activity. Front Immunol. 2021;12:739953. doi: 10.3389/fimmu.2021.739953
  • Marinho Y, Marques-da-Silva C, Santana PT, et al. MSU crystals induce sterile IL-1β secretion via P2X7 receptor activation and HMGB1 release. Biochim Biophys Acta Gen Subj. 2020;1864(1):129461. doi: 10.1016/j.bbagen.2019.129461
  • Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol. 2013;3:414. doi:10.3389/fimmu.2012.00414
  • Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med. 2015;21(3):263–9. doi: 10.1038/nm.3804
  • Goldberg EL, Asher JL, Molony RD, et al. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 2017;18(9):2077–2087. doi: 10.1016/j.celrep.2017.02.004
  • Kim SK, Choe JY, Park KY. Anti-inflammatory effect of artemisinin on uric acid-induced NLRP3 inflammasome activation through blocking interaction between NLRP3 and NEK7. Biochem Biophys Res Commun. 2019;517(2):338–345. doi:10.1016/j.bbrc.2019.07.087
  • Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454–460. doi: 10.1038/ni.2550
  • Leung YY, Yao Hui LL, Kraus VB. Colchicine–update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45(3):341–50. doi:10.1016/j.semarthrit.2015.06.013
  • Hastie SB. Interactions of colchicine with tubulin. Pharmacol Ther. 1991;51(3):377–401. doi:10.1016/0163-7258(91)90067-V
  • Misawa T, Saitoh T, Kozaki T, et al. Resveratrol inhibits the acetylated α-tubulin-mediated assembly of the NLRP3-inflammasome. Int Immunol. 2015;27(9):425–434. doi: 10.1093/intimm/dxv018
  • Jiang H, Chen F, Song D, et al. Dynamin-related protein 1 is involved in mitochondrial damage, defective mitophagy, and NLRP3 inflammasome activation induced by MSU crystals. Oxid Med Cell Longev. 2022;2022:5064494. doi: 10.1155/2022/5064494
  • Cheng G, Liu X, Liu Y, et al. Ultrasmall coordination polymers for alleviating ROS-Mediated inflammatory and realizing neuroprotection against Parkinson’s disease. Research (Wash D C). 2022;2022:9781323. doi: 10.34133/2022/9781323
  • Yin C, Liu B, Wang P, et al. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br J Pharmacol. 2020;177(9):2042–2057. doi: 10.1111/bph.14967
  • Zhang J, Wang C, Wang H, et al. Loganin alleviates sepsis-induced acute lung injury by regulating macrophage polarization and inhibiting NLRP3 inflammasome activation. Int Immunopharmacol. 2021;95:107529. doi: 10.1016/j.intimp.2021.107529
  • Chen B, Li H, Ou G, et al. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res Ther. 2019;21(1):193. doi: 10.1186/s13075-019-1974-z
  • Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65(1):223–244. doi: 10.1146/annurev-med-061512-150641
  • Dinarello CA. Treatment of inflammatory diseases with IL-1 blockade. Curr Otorhinolaryngol Rep. 2018;6(1):1–14. doi:10.1007/s40136-018-0181-9
  • Volarevic V, Al-Qahtani A, Arsenijevic N, et al. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. 2010;43(4):255–263. doi: 10.3109/08916930903305641
  • Cavalli G, Dinarello CA. Anakinra therapy for non-cancer inflammatory diseases. Front Pharmacol. 2018;9:1157. doi:10.3389/fphar.2018.01157
  • Saag KG, Khanna PP, Keenan RT, et al. A randomized, phase II study evaluating the efficacy and safety of Anakinra in the treatment of gout flares. Arthritis & Rheumat. 2021;73(8):1533–1542. doi: 10.1002/art.41699
  • Kapur S, Bonk ME. Rilonacept (arcalyst), an interleukin-1 trap for the treatment of cryopyrin-associated periodic syndromes. P T. 2009;34(3):138–141.
  • Mitha E, Schumacher HR, Fouche L, et al. Rilonacept for gout flare prevention during initiation of uric acid-lowering therapy: results from the PRESURGE-2 international, phase 3, randomized, placebo-controlled trial. Rheumatology (Oxford). 2013;52(7):1285–1292. doi: 10.1093/rheumatology/ket114
  • Sundy JS, Schumacher HR, Kivitz A, et al. Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a phase III, international safety study. J Rheumatol. 2014;41(8):1703–1711. doi: 10.3899/jrheum.131226
  • D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi:10.1002/cbin.11137
  • Yang J, Hu S, Bian Y, et al. Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol. 2022;9:789948. doi: 10.3389/fcell.2021.789948
  • Wang H, Song Z, Xie E, et al. Targeting the LSD1-G9a-ER stress pathway as a novel therapeutic strategy for esophageal squamous cell carcinoma. Research (Wash D C). 2022;2022:9814652. doi: 10.34133/2022/9814652
  • Frangou E, Vassilopoulos D, Boletis J, et al. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment. Autoimmun Rev. 2019;18(8):751–760. doi: 10.1016/j.autrev.2019.06.011
  • Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211. doi:10.1007/s12016-020-08804-7
  • Uratsuji H, Tada Y, Hau CS, et al. Monosodium Urate Crystals Induce Functional Expression of P2Y14 Receptor in Human Keratinocytes. J Invest Dermatol. 2016;136(6):1293–1296. doi: 10.1016/j.jid.2016.01.026
  • Liu C, Zhou M, Jiang W, et al. GPR105-targeted therapy promotes gout resolution as a switch between NETosis and apoptosis of neutrophils. Front Immunol. 2022;13:870183. doi: 10.3389/fimmu.2022.870183
  • Aydin E, Faehling S, Saleh M, et al. Phosphoinositide 3-kinase signaling in the tumor microenvironment: what do we need to consider when treating chronic lymphocytic leukemia with PI3K inhibitors? Front Immunol. 2021;11:595818. doi: 10.3389/fimmu.2020.595818
  • Galvão I, Queiroz-Junior CM, de Oliveira VLS, et al. The inhibition of Phosphoinositide-3 kinases induce resolution of inflammation in a gout model. Front Pharmacol. 2019;9:1505. doi: 10.3389/fphar.2018.01505
  • Galvão I, Melo EM, de Oliveira VLS, et al. Therapeutic potential of the FPR2/ALX agonist AT-01-KG in the resolution of articular inflammation. Pharmacol Res. 2021;165:105445. doi: 10.1016/j.phrs.2021.105445
  • Maimaitiyiming Y, Wang QQ, Yang C, et al. Hyperthermia selectively destabilizes oncogenic fusion proteins. Blood Cancer Discovery. 2021;2(4):388–401. doi: 10.1158/2643-3230.BCD-20-0188
  • Wang QQ, Hussain L, Yu PH, et al. Hyperthermia promotes degradation of the acute promyelocytic leukemia driver oncoprotein ZBTB16/RARα. Acta Pharmacol Sin. 2023;44(4):822–831. doi: 10.1038/s41401-022-01001-6
  • Maimaitiyiming Y, Yang T, Wang QQ, et al. Heat treatment promotes ubiquitin-mediated proteolysis of SARS-CoV-2 RNA polymerase and decreases viral load. Research (Wash D C). 2022;2022:9802969. doi: 10.34133/2022/9802969
  • Wang L, Zhan G, Maimaitiyiming Y, et al. m6A modification confers thermal vulnerability to HPV E7 oncotranscripts via reverse regulation of its reader protein IGF2BP1 upon heat stress. Cell Rep. 2022;41(4):111546. doi: 10.1016/j.celrep.2022.111546
  • Markovic M, Stuhlmeier KM. Short-term hyperthermia prevents activation of proinflammatory genes in fibroblast-like synoviocytes by blocking the activation of the transcription factor NF-kappaB. J Mol Med (Berl). 2006;84(10):821–32. doi:10.1007/s00109-006-0089-6
  • Stuhlmeier KM. Short term hyperthermia prevents the activation of mitogen-activated protein kinase p38. Exp Gerontol. 2009;44(6–7):406–412. doi:10.1016/j.exger.2009.03.002
  • Ahn H, Lee G, Lee GS. Lower temperatures exacerbate NLRP3 inflammasome activation by promoting Monosodium urate crystallization, causing gout. Cells. 2021;10(8):1919. doi:10.3390/cells10081919

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.