135
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging pharmacotherapy trends in preventing and managing oral mucositis induced by chemoradiotherapy and targeted agents

, , , , , , ORCID Icon, ORCID Icon, , , , , , ORCID Icon, , , , , , & show all
Pages 727-742 | Received 19 Feb 2024, Accepted 08 May 2024, Published online: 29 May 2024

References

  • Russo G, Haddad R, Posner M, et al. Radiation treatment breaks and ulcerative mucositis in head and neck cancer. Oncologist. 2008;13(8):886–898. doi: 10.1634/theoncologist.2008-0024
  • Meneses CS, Gidcumb EM, Marcus KL, et al. Acute radiotherapy-associated oral pain may promote tumor growth at distant sites. Front Oncol. 2023;13:1029108. doi: 10.3389/fonc.2023.1029108
  • Elad S, Yarom N, Zadik Y, et al. The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies. Ca A Cancer J Clin. 2022;72(1):57–77. doi: 10.3322/caac.21704
  • Al-Rudayni AHM, Gopinath D, Maharajan MK, et al. Impact of oral mucositis on quality of life in patients undergoing oncological treatment: a systematic review. Transl Cancer Res TCR. 2020;9(4):3126–3134. doi: 10.21037/tcr.2020.02.77
  • Cheng K-F, Leung SF, Liang RHS, et al. Severe oral mucositis associated with cancer therapy: impact on oral functional status and quality of life. Support Care Cancer. 2010;18(11):1477–1485. doi: 10.1007/s00520-009-0771-7
  • Trotti A, Bellm LA, Epstein JB, et al. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: a systematic literature review. Radiother Oncol. 2003;66(3):253–262. doi: 10.1016/S0167-8140(02)00404-8
  • Vera-Llonch M, Oster G, Hagiwara M, et al. Oral mucositis in patients undergoing radiation treatment for head and neck carcinoma. Cancer. 2006;106(2):329–336. doi: 10.1002/cncr.21622
  • Mazul AL, Stepan KO, Barrett TF, et al. Duration of radiation therapy is associated with worse survival in head and neck cancer. Oral Oncol. 2020;108:104819. doi: 10.1016/j.oraloncology.2020.104819
  • Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988;27(2):131–146. doi: 10.3109/02841868809090333
  • Page GG, Blakely WP, Ben-Eliyahu S. Evidence that postoperative pain is a mediator of the tumor-promoting effects of surgery in rats. Pain. 2001;90(1):191–199. doi: 10.1016/S0304-3959(00)00403-6
  • Lalla RV, Brennan MT, Gordon SM, et al. Oral mucositis due to high-dose chemotherapy and/or head and neck radiation therapy. J Natl Cancer Inst Monogr. 2019;2019:lgz011.
  • Elad S, Cheng KKF, Lalla RV, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2020;126(19):4423–4431. doi: 10.1002/cncr.33100
  • Fajardo LF, Berthrong M. Radiation injury in surgical pathology. Am J Surg Pathol. 1978;2(2):159–200. doi: 10.1097/00000478-197806000-00005
  • Ehrenpreis ED, Marsh RDW, Small W Jr. Radiation therapy for pelvic malignancy and its consequences.
  • Sonis ST. A hypothesis for the pathogenesis of radiation-induced oral mucositis: when biological challenges exceed physiologic protective mechanisms. Implications for pharmacological prevention and treatment. Support Care Cancer. 2021;29(9):4939–4947. doi: 10.1007/s00520-021-06108-w
  • Bowen J, Al-Dasooqi N, Bossi P, et al. The pathogenesis of mucositis: updated perspectives and emerging targets. Support Care Cancer. 2019;27(10):4023–4033. doi: 10.1007/s00520-019-04893-z
  • Al-Qadami G, Van Sebille Y, Bowen J, et al. Oral-gut microbiome axis in the pathogenesis of cancer treatment-induced oral mucositis. Front Oral Health. 2022;3:881949. doi: 10.3389/froh.2022.881949
  • Cinausero M, Aprile G, Ermacora P, et al. New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Front Pharmacol. 2017;8:354. doi: 10.3389/fphar.2017.00354
  • Sonis ST. Oral mucositis in cancer therapy. J Support Oncol. 2004;2(3):134–135. doi: 10.1038/ncponc0104
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. doi: 10.1038/s41392-021-00572-w
  • Villa A, Kuten-Shorrer M. Pathogenesis of oral toxicities associated with targeted therapy and immunotherapy. IJMS. 2023;24(9):8188. doi: 10.3390/ijms24098188
  • Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018;834:188–196. doi: 10.1016/j.ejphar.2018.07.034
  • Yuan A, Kurtz SL, Barysauskas CM, et al. Oral adverse events in cancer patients treated with VEGFR-directed multitargeted tyrosine kinase inhibitors. Oral Oncol. 2015;51(11):1026–1033. doi: 10.1016/j.oraloncology.2015.09.003
  • Arena C, Troiano G, De Lillo A, et al. Stomatitis and VEGFR-Tyrosine kinase inhibitors (VR-TKIs): a review of current literature in 4369 patients. Biomed Res Int. 2018;2018:1–16. doi: 10.1155/2018/5035217
  • Boers-Doets CB, Raber-Durlacher JE, Treister NS, et al. Mammalian target of rapamycin inhibitor-associated stomatitis. Future Oncol. 2013;9(12):1883–1892. doi: 10.2217/fon.13.141
  • Zhu Y-N, Li L, Zhang P, et al. Severe stomatitis caused by osimertinib combined with gefitinib: a case report. Clin Case Rep. 2022;10(2):e05396. doi: 10.1002/ccr3.5396
  • Brown TJ, Gupta A. Management of cancer therapy–associated oral mucositis. JCO Oncol Pract. 2020;16(3):103–109. doi: 10.1200/JOP.19.00652
  • Aw D-W, Tan EH, Chin TM, et al. Management of epidermal growth factor receptor tyrosine kinase inhibitor-related cutaneous and gastrointestinal toxicities. Asia Pac J Clin Oncol. 2018;14(1):23–31. doi: 10.1111/ajco.12687
  • Dote S, Itakura S, Kamei K, et al. Oral mucositis associated with anti-EGFR therapy in colorectal cancer: single institutional retrospective cohort study. BMC Cancer. 2018;18(1):957. doi: 10.1186/s12885-018-4862-z
  • Price TJ, Peeters M, Kim TW, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014;15(6):569–579. doi: 10.1016/S1470-2045(14)70118-4
  • Li J, Xie J. Mucositis with anti-EGFR monoclonal antibody in cancer patients: a meta-analysis of randomized controlled trials. Jpn J Clin Oncol. 2018;48(8):718–727. doi: 10.1093/jjco/hyy083
  • Sun X-S, Liang Y-J, Li X-Y, et al. Palliative chemotherapy with or without anti-EGFR therapy for de novo metastatic nasopharyngeal carcinoma: a propensity score-matching study. Drug Des Devel Ther. 2019;13:3207–3216. doi: 10.2147/DDDT.S215190
  • Lu Y, Chen D, Liang J, et al. Administration of nimotuzumab combined with cisplatin plus 5-fluorouracil as induction therapy improves treatment response and tolerance in patients with locally advanced nasopharyngeal carcinoma receiving concurrent radiochemotherapy: a multicenter randomized controlled study. BMC Cancer. 2019;19:1262.
  • Yu Z-K, Chen X-Y, Liu S-H, et al. Adding concurrent chemotherapy significantly improves the survival of stage II-IVb nasopharyngeal carcinoma patients treated with concurrent anti-EGFR agents. Front Oncol. 2021;11:814881. doi: 10.3389/fonc.2021.814881
  • Liu Y, Guo Y, Wu Z, et al. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: a phase I clinical trial. Cytotherapy. 2020;22(10):573–580. doi: 10.1016/j.jcyt.2020.04.088
  • Peterson DE, O’Shaughnessy JA, Rugo HS, et al. Oral mucosal injury caused by mammalian target of rapamycin inhibitors: emerging perspectives on pathobiology and impact on clinical practice. Cancer Med. 2016;5(8):1897–1907. doi: 10.1002/cam4.761
  • Boers-Doets CB, Epstein JB, Raber-Durlacher JE, et al. Oral adverse events associated with tyrosine kinase and mammalian target of rapamycin inhibitors in renal cell carcinoma: a structured literature review. Oncology. 2012;17(1):135–144. doi: 10.1634/theoncologist.2011-0111
  • Martins F, de Oliveira MA, Wang Q, et al. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol. 2013;49(4):293–298. doi: 10.1016/j.oraloncology.2012.11.008
  • McHugh DJ, Chudow J, DeNunzio M, et al. A phase I trial of IGF-1 R inhibitor cixutumumab and mTOR inhibitor temsirolimus in metastatic castration-resistant prostate cancer. Clin Genitourin Cancer. 2020;18(3):171–178.e2. doi: 10.1016/j.clgc.2019.10.013
  • Park H, Williams K, Trikalinos NA, et al. A phase I trial of temsirolimus and erlotinib in patients with refractory solid tumors. Cancer Chemother Pharmacol. 2021;87(3):337–347. doi: 10.1007/s00280-020-04183-0
  • Nelson BE, Tsimberidou AM, Fu X, et al. A phase i trial of bevacizumab and temsirolimus in combination with valproic acid in advanced solid tumors. Oncology. 2023;28(12):1100–e1292. doi: 10.1093/oncolo/oyad158
  • Ness DB, Pooler DB, Ades S, et al. A phase II study of alternating sunitinib and temsirolimus therapy in patients with metastatic renal cell carcinoma. Cancer Med. 2023;12(12):13100–13110. doi: 10.1002/cam4.5990
  • Capdevila J, Teulé A, Barriuso J, et al. Phase II study of Everolimus and Octreotide LAR in patients with nonfunctioning gastrointestinal neuroendocrine tumors: the GETNE1003_EVERLAR study. Oncology. 2019;24(1):38–46. doi: 10.1634/theoncologist.2017-0622
  • Trivedi ND, Armstrong S, Wang H, et al. A phase I trial of the mTOR inhibitor temsirolimus in combination with capecitabine in patients with advanced malignancies. Cancer Med. 2021;10(6):1944–1954. doi: 10.1002/cam4.3672
  • Cascone T, Sacks RL, Subbiah IM, et al. Safety and activity of vandetanib in combination with everolimus in patients with advanced solid tumors: a phase I study. ESMO Open. 2021;6(2):100079. doi: 10.1016/j.esmoop.2021.100079
  • Dunn LA, Riaz N, Fury MG, et al. A phase 1b study of cetuximab and BYL719 (Alpelisib) concurrent with intensity modulated radiation therapy in stage III-IVB head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2020;106(3):564–570. doi: 10.1016/j.ijrobp.2019.09.050
  • Gordon EM, Angel NL, Omelchenko N, et al. A phase I/II investigation of safety and efficacy of nivolumab and nab-sirolimus in patients with a variety of tumors with genetic mutations in the mTOR pathway. Anticancer Res. 2023;43(5):1993–2002. doi: 10.21873/anticanres.16360
  • Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86. doi: 10.3389/fonc.2018.00086
  • Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044–3060. doi: 10.3390/curroncol29050247
  • Shazib MA, Woo S-B, Sroussi H, et al. Oral immune-related adverse events associated with PD-1 inhibitor therapy: a case series. Oral Dis. 2020;26(2):325–333. doi: 10.1111/odi.13218
  • Klein BA, Alves FA, de Santana Rodrigues Velho J, et al. Oral manifestations of immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Oral Dis. 2022;28(1):9–22. doi: 10.1111/odi.13964
  • Klein BA, Shazib MA, Villa A, et al. Immune checkpoint inhibitors in cancer therapy: Review of orofacial adverse events and role of the oral healthcare provider. Front Oral Health. 2022;3:968157. doi: 10.3389/froh.2022.968157
  • https://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf?_gl=1*168lccl*_ga*MTE5MDM1NjQ2OS4xNzAxMzgxNjc3*_ga_LVY4YVJJ3H*MTcwMTM4MTY3Ny4xLjAuMTcwMTM4MTY3OC41OS4wLjA.*_gcl_aw*R0NMLjE3MDEzODE2NzguRUFJYUlRb2JDaE1Jek15cDBkenNnZ01WRnRQSUNoMGx1UUwxRUFBWUFTQUFFZ0wyNF9EX0J3RQ.*_gcl_dc*R0NMLjE3MDEzODE2NzguRUFJYUlRb2JDaE1Jek15cDBkenNnZ01WRnRQSUNoMGx1UUwxRUFBWUFTQUFFZ0wyNF9EX0J3RQ.*_gcl_au*MTA4MDE5MDkyMC4xNzAxMzgxNjc3
  • https://packageinserts.bms.com/pi/pi_opdivo.pdf
  • https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/9496217c-08b3-432b-ab4f-538d795820bd/9496217c-08b3-432b-ab4f-538d795820bd_viewable_rendition__v.pdf
  • https://www.emdserono.com/us-en/pi/bavencio-pi.pdf
  • https://www.gene.com/download/pdf/tecentriq_prescribing.pdf
  • https://packageinserts.bms.com/pi/pi_yervoy.pdf
  • https://packageinserts.bms.com/pi/pi_opdualag.pdf
  • Parisi C, Mahjoubi L, Gazzah A, et al. TROP-2 directed antibody-drug conjugates (ADCs): The revolution of smart drug delivery in advanced non-small cell lung cancer (NSCLC). Cancer Treat Rev. 2023;118:102572. doi: 10.1016/j.ctrv.2023.102572
  • Bardia A, Krop I, Meric-Bernstam F, et al. Abstract P6-10-03: Datopotamab Deruxtecan (Dato-DXd) in advanced triple-negative breast cancer (TNBC): updated results from the phase 1 TROPION-PanTumor01 study. Cancer Res. 2023;83(5_Supplement):P6–03. doi: 10.1158/1538-7445.SABCS22-P6-10-03
  • Bardia A, Jhaveri K, Kalinsky K, et al. TROPION-Breast01: Datopotamab deruxtecan vs chemotherapy in pre-treated inoperable or metastatic HR+/HER2– breast cancer. Future Oncol. 2023;20(8):423–436. doi: 10.2217/fon-2023-0188
  • Dent RA, Cescon DW, Bachelot T, et al. TROPION-Breast02: datopotamab deruxtecan for locally recurrent inoperable or metastatic triple-negative breast cancer. Future Oncol. 2023;19(35):2349–2359. doi: 10.2217/fon-2023-0228
  • Ahn M-J, Lisberg AE, Paz-Ares L, et al. 509MO Datopotamab deruxtecan (Dato-DXd) vs docetaxel in previously treated advanced/metastatic (adv/met) non-small cell lung cancer (NSCLC): results of the randomized phase III study TROPION-Lung01. Ann Oncol. 2023;34:S1665–S1666. doi: 10.1016/j.annonc.2023.10.588
  • Shimizu T, Sands J, Yoh K, et al. First-in-human, phase I dose-escalation and dose-expansion study of trophoblast cell-surface antigen 2–directed antibody-drug conjugate datopotamab deruxtecan in non–small-cell lung cancer: TROPION-PanTumor01. J Clin Oncol. 2023;41(29):4678–4687. doi: 10.1200/JCO.23.00059
  • Cozzi L, Fogliata A, Lomax A, et al. A treatment planning comparison of 3D conformal therapy, intensity modulated photon therapy and proton therapy for treatment of advanced head and neck tumours. Radiother Oncol. 2001;61(3):287–297. doi: 10.1016/S0167-8140(01)00403-0
  • Wright CM, Baron J, Lee DY, et al. Dosimetric results for adjuvant proton radiation therapy of HPV-associated oropharynx cancer. Int J Part Ther. 2022;8(4):47–54. doi: 10.14338/IJPT-D-21-00018
  • Sherry AD, Pasalic D, Gunn GB, et al. Proton beam therapy for head and neck carcinoma of unknown primary: toxicity and quality of life. Int J Part Ther. 2021;8(1):234–247. doi: 10.14338/IJPT-20-00034.1
  • Nangia S, Gaikwad U, Noufal MP, et al. Proton therapy and oral mucositis in oral & oropharyngeal cancers: outcomes, dosimetric and NTCP benefit. Radiat Oncol. 2023;18(1):121. doi: 10.1186/s13014-023-02317-1
  • van Dijk LV, Frank SJ, Yuan Y, et al. Proton image-guided radiation assignment for therapeutic escalation via selection of locally advanced head and neck cancer patients [PIRATES]: a phase I safety and feasibility trial of MRI-guided adaptive particle radiotherapy. Clin Transl Radiat Oncol. 2022;32:35–40. doi: 10.1016/j.ctro.2021.11.003
  • Anderson JD, DeWees TA, Ma DJ, et al. A prospective study of mucosal sparing radiation therapy in resected oropharyngeal cancer patients. Int J Radiat Oncol Biol Phys. 2023;115(1):192–201. doi: 10.1016/j.ijrobp.2022.06.057
  • Alves N, Dias JM, Rocha H, et al. Assessing the need for adaptive radiotherapy in head and neck cancer patients using an automatic planning tool. Rep Pract Oncol Radiother. 2021;26:423–432. doi: 10.5603/RPOR.a2021.0056
  • Weppler S, Quon H, Schinkel C, et al. Patient-reported outcomes-guided adaptive radiation therapy for head and neck cancer. Front Oncol. 2021;11:759724. doi: 10.3389/fonc.2021.759724
  • Kataria T, Gupta D, Goyal S, et al. Clinical outcomes of adaptive radiotherapy in head and neck cancers. Br J Radiol. 2016;89(1062):20160085. doi: 10.1259/bjr.20160085
  • Shi F, Hu W, Wu J, et al. Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy. Nat Commun. 2022;13(1):6566. doi: 10.1038/s41467-022-34257-x
  • Lucido JJ, DeWees TA, Leavitt TR, et al. Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning. Front Oncol. 2023;13:1137803. doi: 10.3389/fonc.2023.1137803
  • Brodin NP, Schulte L, Velten C, et al. Organ-at-risk dose prediction using a machine learning algorithm: Clinical validation and treatment planning benefit for lung SBRT. J Appl Clin Med Phys. 2022;23(6):e13609. doi: 10.1002/acm2.13609
  • Rubenstein EB, Peterson DE, Schubert M, et al. Clinical practice guidelines for the prevention and treatment of cancer therapy-induced oral and gastrointestinal mucositis. Cancer. 2004;100(S9):2026–2046. doi: 10.1002/cncr.20163
  • Keefe DM, Schubert MM, Elting LS, et al. Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer. 2007;109(5):820–831. doi: 10.1002/cncr.22484
  • Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120(10):1453–1461. doi: 10.1002/cncr.28592
  • Juan CA, Pérez de la Lastra JM, Plou FJ, et al. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. IJMS. 2021;22(9):4642. doi: 10.3390/ijms22094642
  • Villa A, Sonis ST. Radiotherapy-induced severe oral mucositis: pharmacotherapies in recent and current clinical trials. Expert Opin Investig Drugs. 2023;32(4):301–310. doi: 10.1080/13543784.2023.2193324
  • Sonis ST. Superoxide dismutase as an intervention for radiation therapy-associated toxicities: review and profile of avasopasem manganese as a treatment option for radiation-induced mucositis. Drug Des Devel Ther. 2021;15:1021–1029. doi: 10.2147/DDDT.S267400
  • Villa A, Sonis ST. An update on pharmacotherapies in active development for the management of cancer regimen-associated oral mucositis. Expert Opin Pharmacother. 2020;21(5):541–548. doi: 10.1080/14656566.2020.1718652
  • Anderson CM, Lee CM, Kelley JR, et al. Tumor outcomes for ROMAN: phase 3 trial of avasopasem manganese (GC4419) for severe oral mucositis (SOM) in patients receiving chemoradiotherapy (CRT) for locally advanced head and neck cancer (LAHNC). Int J Radiat Oncol Biol Phys. 2022;114(3):S97–S98. doi: 10.1016/j.ijrobp.2022.07.518
  • Alkhouli M, Laflouf M, Alhaddad M. Efficacy of aloe-vera use for prevention of chemotherapy-induced oral mucositis in children with acute lymphoblastic leukemia: a randomized controlled clinical trial. Compr Child Adolesc Nurs. 2021;44(1):49–62. doi: 10.1080/24694193.2020.1727065
  • Heggie S, Bryant GP, Tripcony L, et al. A Phase III study on the efficacy of topical aloe vera gel on irradiated breast tissue. Cancer Nurs. 2002;25(6):442–451. doi: 10.1097/00002820-200212000-00007
  • Colella G, Boschetti CE, Vitagliano R, et al. Interventions for the prevention of oral mucositis in patients receiving cancer treatment: evidence from randomised controlled trials. Curr Oncol. 2023;30(1):967–980. doi: 10.3390/curroncol30010074
  • Aryan H, Farahani RH, Chamanara M, et al. Evaluation of the efficacy of oral nano-silymarin formulation in hospitalized patients with COVID-19: a double-blind placebo-controlled clinical trial. Phytother Res. 2022;36(10):3924–3931. doi: 10.1002/ptr.7537
  • Osei-Fofie D, Wetter J, Landers GA, et al. Phase Ib, international, dose-escalation study to evaluate the safety, pharmacokinetics (PK) and efficacy of ST-617 for the attenuation of oral mucositis (OM) in patients receiving chemoradiation (CRT) for head and neck (H&N) cancer. JCO. 2021;39(15_suppl):6075–6075. doi: 10.1200/JCO.2021.39.15_suppl.6075
  • Lissoni P, Barni S, Mandalà M, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer. 1999;35(12):1688–1692. doi: 10.1016/S0959-8049(99)00159-8
  • Lissoni P, Tancini G, Barni S, et al. Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin. Support Care Cancer. 1997;5(2):126–129. doi: 10.1007/BF01262569
  • Fan R, Bu X, Yang S, et al. Effect of melatonin on quality of life and symptoms in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2022;12(9):e060912. doi: 10.1136/bmjopen-2022-060912
  • de Oliveira PHC, Lemos CAA, Cantiga-Silva C, et al. Melatonin as an adjunctive treatment on dental procedures: a systematic review. Oral Dis. 2022;28(7):1770–1782. doi: 10.1111/odi.13941
  • Ortiz F, Acuña-Castroviejo D, Doerrier C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015;58(1):34–49. doi: 10.1111/jpi.12191
  • Elsabagh HH, Moussa E, Mahmoud SA, et al. Efficacy of melatonin in prevention of radiation-induced oral mucositis: a randomized clinical trial. Oral Dis. 2020;26(3):566–572. doi: 10.1111/odi.13265
  • Lozano A, Marruecos J, Rubió J, et al. Randomized placebo-controlled phase II trial of high-dose melatonin mucoadhesive oral gel for the prevention and treatment of oral mucositis in patients with head and neck cancer undergoing radiation therapy concurrent with systemic treatment. Clin Transl Oncol. 2021;23(9):1801–1810. doi: 10.1007/s12094-021-02586-w
  • Lalla RV, Solé S, Becerra S, et al. Efficacy and safety of dentoxol® in the prevention of radiation-induced oral mucositis in head and neck cancer patients (ESDOM): a randomized, multicenter, double-blind, placebo-controlled, phase II trial. Support Care Cancer. 2020;28(12):5871–5879. doi: 10.1007/s00520-020-05358-4
  • Ebert N, Kensche A, Löck S, et al. Results of a randomized controlled phase III trial: efficacy of polyphenol-containing cystus® tea mouthwash solution for the reduction of mucositis in head and neck cancer patients undergoing external beam radiotherapy. Strahlenther Onkol. 2021;197(1):63–73. doi: 10.1007/s00066-020-01684-y
  • Liao Y-C, Hsu L-F, Hsieh L-Y, et al. Effectiveness of green tea mouthwash for improving oral health status in oral cancer patients: A single-blind randomized controlled trial. Int J Nurs Stud. 2021;121:103985. doi: 10.1016/j.ijnurstu.2021.103985
  • Li C-H, Ko J-L, Ou C-C, et al. The Protective Role of GMI, an immunomodulatory protein from ganoderma microsporum, on 5-fluorouracil-induced oral and intestinal mucositis. Integr Cancer Ther. 2019;18:1534735419833795. doi: 10.1177/1534735419833795
  • Lu H-J, Li C-H, Kang Y-T, et al. Efficacy of GMI, a fungal immunomodulatory protein, for head and neck cancer patients with chemotherapy-related oral mucositis: an open-labeled prospective single-arm study. Medicine (Baltimore). 2022;101(16):e29185. doi: 10.1097/MD.0000000000029185
  • Koushik K, Janaki MG, Kumawat R, et al. Safety and efficacy of oro-T oral rinse in oral mucositis during cancer radiotherapy and/or chemotherapy: cumulative analysis of two studies. J Cancer Res Ther. 2021;17(6):1503–1509. doi: 10.4103/jcrt.JCRT_988_17
  • Sahebnasagh M, Aksi V, Eslami F, et al. Prevention of radiotherapy-related oral mucositis with zinc and polyherbal mouthwash: a double-blind, randomized clinical trial. Eur J Med Res. 2023;28(1):109. doi: 10.1186/s40001-023-01015-8
  • Zhang S, Li J, Zhang Y, et al. Efficacy of nonpharmacological interventions for severe radiation-induced oral mucositis among head and neck cancer patients: a network meta-analysis of randomised controlled trials. J Clin Nurs. 2024;33(6):2030–2049. doi: 10.1111/jocn.17087
  • Peng T-R, Tsai F-P, Wu T-W, et al. Effects of various treatments for preventing oral mucositis in cancer patients: a network meta-analysis. PLoS One. 2022;17(12):e0278102. doi: 10.1371/journal.pone.0278102
  • Yu Y-T, Deng J-L, Jin X-R, et al. Effects of 9 oral care solutions on the prevention of oral mucositis: a network meta-analysis of randomized controlled trials. Medicine (Baltimore). 2020;99(16):e19661. doi: 10.1097/MD.0000000000019661
  • Pedroso SHSP, Vieira AT, Bastos RW, et al. Evaluation of mucositis induced by irinotecan after microbial colonization in germ-free mice. Microbiology (Reading). 2015;161(10):1950–1960. doi: 10.1099/mic.0.000149
  • Di Cosola M, Spirito F, Saracino P, et al. Oral immune-related adverse events caused by immune checkpoint inhibitors: a retrospective study. Minerva Dent Oral Sci. 2023 [cited 2024 Jan 3];71. Available from: https://www.minervamedica.it/index2.php?show=R18Y2022N06A0318
  • Cosseau C, Devine DA, Dullaghan E, et al. The commensal streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun. 2008;76(9):4163–4175. doi: 10.1128/IAI.00188-08
  • Xia C, Jiang C, Li W, et al. A phase ii randomized clinical trial and mechanistic studies using improved probiotics to prevent oral mucositis induced by concurrent radiotherapy and chemotherapy in nasopharyngeal carcinoma. Front Immunol. 2021;12:618150. doi: 10.3389/fimmu.2021.618150
  • Mirza MA, Aruna D, Irukulla M. Efficacy of bacillus clausii UBBC - 07 spores in the amelioration of oral mucositis in head and neck cancer patients undergoing radiation therapy. Cancer Treat Res Commun. 2022;31:100523. doi: 10.1016/j.ctarc.2022.100523
  • Liu Y-C, Wu C-R, Huang T-W. Preventive effect of probiotics on oral mucositis induced by cancer treatment: a systematic review and meta-analysis. Int J Mol Sci. 2022;23(21):13268. doi: 10.3390/ijms232113268
  • Yin J, Xie J, Lin J, et al. Evaluation of the efficacy of the anti-ulcer oral mucosal protective agent RADoralex® in the prevention and treatment of radiation-induced oral mucosal reactions induced during treatment of nasopharyngeal carcinoma. Cancer Biol Ther. 2022;23(1):27–33. doi: 10.1080/15384047.2021.2013704
  • Nasrollahi H, Khaki S, Ansari M, et al. Evaluation of mucosamin effect on treating radiation induced oral mucositis during and after radiotherapy amongst patients with oral cavity squamous cell carcinoma. Asian Pac J Cancer Prev. 2021;22(11):3711–3715. doi: 10.31557/APJCP.2021.22.11.3711
  • Cirillo N, Vicidomini A, McCullough M, et al. A hyaluronic acid-based compound inhibits fibroblast senescence induced by oxidative stress in vitro and prevents oral mucositis in vivo. J Cell Physiol. 2015;230(7):1421–1429. doi: 10.1002/jcp.24908
  • Shahrabi M, Solduzian M, Babaie MH, et al. The effects of a combination oral spray (Mucosamin®) for the prevention of oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation: a double blind randomized clinical trial. Support Care Cancer. 2022;30(10):7963–7972. doi: 10.1007/s00520-022-07231-y
  • Ueno T, Yatsuoka W, Ishiki H, et al. Effects of an oral mucosa protective formulation on chemotherapy- and/or radiotherapy-induced oral mucositis: a prospective study. BMC Cancer. 2022;22(1):90. doi: 10.1186/s12885-021-09107-6
  • Ito K, Tokura S, Takazawa I, et al. Clinical investigation of use of Episil® oral solution in oral mucositis during radiotherapy for head and neck cancer. Heliyon. 2023;9(6):e15869. doi: 10.1016/j.heliyon.2023.e15869
  • Soutome S, Otsuru M, Murata M, et al. Preventive effects of betamethasone valerate ointment for radiation-induced severe oral mucositis in patients with oral or oropharyngeal cancer: protocol for a multicentre, phase II, randomised controlled trial (bet-ROM study). BMJ Open. 2022;12(1):e056781. doi: 10.1136/bmjopen-2021-056781
  • Vokurka S, Kozáková Š, Jánská V, et al. Stomatitis in mTOR inhibitors treatment and other targeted cancer therapy, possibilities of infl uencing it, and the use of local corticotherapy. Klin Onkol. 2020;33(6):436–439. doi: 10.48095/ccko2020436
  • Ala S, Saeedi M, Ghasemi A, et al. Effect of atorvastatin 1% mouthwash in the prevention of radiotherapy induced mucositis: a pilot study. Caspian J Intern Med. 2022;13(4):800–804. doi: 10.22088/cjim.13.4.800
  • Molania T, Akbari J, Babaei A, et al. Atorvastatin mucoadhesive tablets in the management of recurrent aphthous stomatitis: a randomized clinical study. BMC Oral Health. 2023;23(1):285. doi: 10.1186/s12903-023-02846-x
  • Parkhideh S, Zeraatkar M, Moradi O, et al. Azithromycin oral suspension in prevention and management of oral mucositis in patients undergoing hematopoietic stem cell transplantation: a randomized controlled trial. Support Care Cancer. 2022;30(1):251–257. doi: 10.1007/s00520-021-06409-0
  • Gorsky M, Epstein J, Rabenstein S, et al. Topical minocycline and tetracycline rinses in treatment of recurrent aphthous stomatitis: a randomized cross-over study. Dermatol Online J. 2007;13(2):1. doi: 10.5070/D31658K5FQ
  • Kuba S, Yamanouchi K, Matsumoto M, et al. Study protocol for efficacy and safety of steroid-containing mouthwash to prevent chemotherapy-induced stomatitis in women with breast cancer: a multicentre, open-label, randomised phase 2 study. BMJ Open. 2020;10(2):e033446. doi: 10.1136/bmjopen-2019-033446
  • Solé S, Becerra S, Carvajal C, et al. Clinical relevance of the use of Dentoxol® for oral mucositis induced by radiotherapy: a phase II clinical trial. World J Clin Oncol. 2022;13(10):813–821. doi: 10.5306/wjco.v13.i10.813
  • Meyer I, Chan B, Cohen E, et al. Use of a buprenorphine-based pain management protocol is associated with reduced opioid requirements and pain on swallowing in oral mucositis: a retrospective cohort study. Support Care Cancer. 2022;30(7):6013–6020. doi: 10.1007/s00520-022-07014-5
  • Smith DK, Cmelak A, Niermann K, et al. Preventive use of gabapentin to decrease pain and systemic symptoms in patients with head and neck cancer undergoing chemoradiation. Head Neck. 2020;42(12):3497–3505. doi: 10.1002/hed.26407
  • Hata H, Takada S, Sato J, et al. Analgesic effects of indomethacin spray on drug-induced oral mucositis pain in patients with cancer: a single-arm cross-sectional study. Spec Care Dentist. 2021;41(4):498–504. doi: 10.1111/scd.12587
  • Nagaoka H, Momo K, Hamano J, et al. Effects of an Indomethacin oral spray on pain due to oral mucositis in cancer patients treated with radiotherapy and chemotherapy: a double-blind, randomized, placebo-controlled trial (JORTC-PAL04). J Pain Symptom Manage. 2021;62(3):537–544. doi: 10.1016/j.jpainsymman.2021.01.123
  • Ono K, Momo K, Yasu T, et al. Optimization of preparation, and stability of indomethacin mouth wash for oral mucositis caused by cancer therapy. Gan To Kagaku Ryoho. 2020;47(10):1465–1470.
  • Roldan CJ, Huh B, Song J, et al. Methylene blue for intractable pain from oral mucositis related to cancer treatment: a randomized phase 2 clinical trial. BMC Med. 2022;20(1):377. doi: 10.1186/s12916-022-02579-8
  • Sun N, Li Y, Nie P. Standardized nursing and clinical efficacy of OxyContin in reducing oral mucosal pain in patients with nasopharyngeal carcinoma: a randomized, double-blind, placebo-controlled study protocol. Medicine (Baltimore). 2020;99(49):e23205. doi: 10.1097/MD.0000000000023205
  • Liang L, Liu Z, Zhu H, et al. Efficacy and safety of thalidomide in preventing oral mucositis in patients with nasopharyngeal carcinoma undergoing concurrent chemoradiotherapy: a multicenter, open-label, randomized controlled trial. Cancer. 2022;128(7):1467–1474. doi: 10.1002/cncr.34074
  • https://ir.monopartx.com/press-releases/detail/68/monopar-announces-result-of-interim-analysis-of-phase-2b3
  • Available from: https://www.ipharminc.com/press-release/2017/12/11/innovation-pharmaceuticals-reports-positive-topline-results-from-phase-2-placebo-controlled-trial-of-brilacidin-for-the-prevention-of-oral-mucositis-in-head-and-neck-cancer-patients
  • Henson C, Clayburgh D, Lee A, et al. Phase 2, randomized, double-blind trial of EC-18 versus placebo to mitigate the development and time course of oral mucositis from concomitant chemoradiation for head and neck cancer. J Clin Oncol. 2022;40(16_suppl):12106–12106. doi: 10.1200/JCO.2022.40.16_suppl.12106
  • https://www.enzychem.com/our-science/ec-18-technology-platform/
  • https://ir.soligenix.com/2020-12-22-Soligenix-Announces-Topline-Results-from-its-Phase-3-Clinical-Trial-of-SGX942-for-the-Treatment-of-Oral-Mucositis-in-Head-and-Neck-Cancer-Patients
  • Anderson CM, Sonis ST, Lee CM, et al. Phase 1b/2a trial of the superoxide dismutase mimetic GC4419 to reduce chemoradiotherapy-induced oral mucositis in patients with oral cavity or oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2018;100(2):427–435. doi: 10.1016/j.ijrobp.2017.10.019
  • Anderson CM, Lee CM, Saunders DP, et al. Phase IIb, randomized, double-blind trial of GC4419 versus placebo to reduce severe oral mucositis due to concurrent radiotherapy and cisplatin for head and neck cancer. J Clin Oncol. 2019;37(34):3256–3265. doi: 10.1200/JCO.19.01507
  • Sonis ST, Anderson CM. Avasopasem for the treatment of radiotherapy-induced severe oral mucositis. Expert Opin Investig Drugs. 2023;32(6):463–470. doi: 10.1080/13543784.2023.2230117
  • Oronsky B, Carter CA, Caroen S, et al. RRx-001, a first-in-class small molecule inhibitor of MYC and a downregulator of CD47, is an “erythrophagoimmunotherapeutic. Oncoimmunology. 2020;9(1):1746172. doi: 10.1080/2162402X.2020.1746172
  • Bonomi M, Blakaj DM, Kabarriti R, et al. PREVLAR: phase 2a randomized trial to assess the safety and efficacy of RRx-001 in the attenuation of oral mucositis in patients receiving head and Neck Chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2023;116(3):551–559. doi: 10.1016/j.ijrobp.2022.12.031
  • DeAngelo DJ, Jonas BA, Liesveld JL, et al. Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia. Blood. 2022;139(8):1135–1146. doi: 10.1182/blood.2021010721
  • Gobbo M, Merigo E, Arany PR, et al. Quality assessment of pbm protocols for oral complications in head and neck cancer patients: part 1. Front Oral Health. 2022;3:945718. doi: 10.3389/froh.2022.945718
  • Abdalla-Aslan R, Zadik Y, Intrator O, et al. Clinical use of photobiomodulation for the prevention and treatment of oral mucositis: the real-life experience of MASCC/ISOO members. Support Care Cancer. 2023;31(8):481. doi: 10.1007/s00520-023-07919-9
  • Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol. 2018;19(S1):31–39. doi: 10.1007/s40257-018-0384-3
  • Jones VE, McIntyre KJ, Paul D, et al. Evaluation of miracle mouthwash plus hydrocortisone versus prednisolone mouth rinses as prophylaxis for everolimus-associated stomatitis: a randomized phase II study. Oncology. 2019;24(9):1153–1158. doi: 10.1634/theoncologist.2018-0340
  • Epstein JB, Raber-Durlacher JE, Epstein GL, et al. Chronic oral graft-versus-host disease: induction and maintenance therapy with photobiomodulation therapy. Support Care Cancer. 2021;29(3):1387–1394. doi: 10.1007/s00520-020-05626-3
  • Zecha JAEM, Raber-Durlacher JE, Nair RG, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016;24(6):2781–2792. doi: 10.1007/s00520-016-3152-z
  • Brandão TB, Morais-Faria K, Ribeiro ACP, et al. Locally advanced oral squamous cell carcinoma patients treated with photobiomodulation for prevention of oral mucositis: retrospective outcomes and safety analyses. Support Care Cancer. 2018;26(7):2417–2423. doi: 10.1007/s00520-018-4046-z
  • de Pauli Paglioni M, Faria KM, Palmier NR, et al. Patterns of oral mucositis in advanced oral squamous cell carcinoma patients managed with prophylactic photobiomodulation therapy—insights for future protocol development. Lasers Med Sci. 2021;36(2):429–436. doi: 10.1007/s10103-020-03091-2
  • Antunes HS, Herchenhorn D, Small IA, et al. Long-term survival of a randomized phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis. Oral Oncol. 2017;71:11–15. doi: 10.1016/j.oraloncology.2017.05.018
  • Kauark-Fontes E, Migliorati CA, Epstein JB, et al. Extraoral photobiomodulation for prevention of oral and oropharyngeal mucositis in head and neck cancer patients: interim analysis of a randomized, double-blind, clinical trial. Support Care Cancer. 2022;30(3):2225–2236. doi: 10.1007/s00520-021-06625-8
  • Zhong N-N, Wang H-Q, Huang X-Y, et al. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol. 2023;95:52–74. doi: 10.1016/j.semcancer.2023.07.002
  • Rachi T, Ariji T, Takahashi S. Development of programs to predict the occurrence of mucositis from digital imaging and communications in medicine data by machine learning in head and neck volumetric modulated radiotherapy. J Appl Clin Med Phys. 2023;24(12):e14125. doi: 10.1002/acm2.14125
  • Thukral R, Aggarwal AK, Arora AS, et al. Artificial intelligence-based prediction of oral mucositis in patients with head-and-neck cancer: a prospective observational study utilizing a thermographic approach. Cancer Res Stat Treat. 2023;6(2):181–190. doi: 10.4103/crst.crst_332_22
  • Dong Y, Zhang J, Lam S, et al. Multimodal data integration to predict severe acute oral mucositis of nasopharyngeal carcinoma patients following radiation therapy. Cancers (Basel). 2023;15(7):2032. doi: 10.3390/cancers15072032
  • Wardill HR, Sonis ST, Blijlevens NMA, et al. Prediction of mucositis risk secondary to cancer therapy: a systematic review of current evidence and call to action. Support Care Cancer. 2020;28(11):5059–5073. doi: 10.1007/s00520-020-05579-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.