81
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical guidance for unfractionated heparin dosing and monitoring in critically ill patients

, , , , &
Pages 985-997 | Received 29 Jan 2024, Accepted 31 May 2024, Published online: 07 Jun 2024

References

  • van Roessel S, Middeldorp S, Cheung YW, et al. Accuracy of aPTT monitoring in critically ill patients treated with unfractionated heparin. Neth J Med. 2014 Jul;72(6):305–310.
  • Aarab R, van Es J, de Pont AC, et al. Monitoring of unfractionated heparin in critically ill patients. Neth J Med. 2013 Nov;71(9):466–471.
  • Shah S, Barton G, Fischer A. Pharmacokinetic considerations and dosing strategies of antibiotics in the critically ill patient. J Intensive Care Soc. 2015 May;16(2):147–153. doi: 10.1177/1751143714564816
  • Hirsh J, Anand SS, Halperin JL, et al. Guide to anticoagulant therapy: Heparin: a statement for healthcare professionals from the American Heart Association. Circulation. [2001 Jun 19];103(24):2994–3018. doi: 10.1161/01.CIR.103.24.2994
  • Hirsh J, Anand SS, Halperin JL, et al. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler Thromb Vasc Biol. 2001 Jul;21(7):1094–1096. doi: 10.1161/hq0701.093686
  • Hirsh J, Raschke R, Warkentin TE, et al. Heparin: mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1995 Oct;108(4 Suppl):258S–275S. doi: 10.1378/chest.108.4_Supplement.258S
  • Baluwala I, Favaloro EJ, Pasalic L. Therapeutic monitoring of unfractionated heparin - trials and tribulations. Expert Rev Hematol. 2017 Jul;10(7):595–605. doi: 10.1080/17474086.2017.1345306
  • Chen Y, Phoon PHY, Hwang NC. Heparin resistance during cardiopulmonary bypass in adult cardiac surgery. J Cardiothorac Vasc Anesth. 2022 Nov;36(11):4150–4160. doi: 10.1053/j.jvca.2022.06.021
  • Adams RL, Bird RJ. Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton). 2009 Aug;14(5):462–470. doi: 10.1111/j.1440-1797.2009.01128.x
  • Hirsh J, Dalen JE, Deykin D, et al. Heparin: mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1992 Oct;102(4 Suppl):337S–351S. doi: 10.1378/chest.102.4_Supplement.337S
  • Dean CL. An overview of heparin monitoring with the anti-Xa assay. Methods Mol Biol. 2023;2663:343–353.
  • Horton S, Augustin S. Activated clotting time (ACT). Methods Mol Biol. 2013;992:155–167.
  • Kandrotas RJ. Heparin pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 1992 May;22(5):359–374. doi: 10.2165/00003088-199222050-00003
  • Ward RA. Heparinization for routine hemodialysis. Adv Ren Replace Ther. 1995 Oct;2(4):362–370. doi: 10.1016/S1073-4449(12)80034-3
  • Boneu B, Caranobe C, Sie P. 3 Pharmacokinetics of heparin and low molecular weight heparin. Baillieres Clin Haematol. 1990 Jul;3(3):531–544. doi: 10.1016/S0950-3536(05)80017-4
  • Morales Castro D, Dresser L, Granton J, et al. Pharmacokinetic alterations associated with critical illness. Clin Pharmacokinet. 2023 Feb;62(2):209–220. doi: 10.1007/s40262-023-01213-x
  • Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014 Jun;14(6):498–509. doi: 10.1016/S1473-3099(14)70036-2
  • Zamoner W, de Freitas FM, Garms DS, et al. Pharmacokinetics and pharmacodynamics of antibiotics in critically ill acute kidney injury patients. Pharmacol Res Perspect. 2016 Dec;4(6):e00280. doi: 10.1002/prp2.280
  • Evans T. Diagnosis and management of sepsis. Clin Med. 2018 Mar;18(2):146–149. doi: 10.7861/clinmedicine.18-2-146
  • Goligher EC, Lawler PR, Jensen TP, et al. Heterogeneous treatment effects of therapeutic-dose heparin in patients hospitalized for COVID-19. JAMA. [2023 Apr 4];329(13):1066–1077. doi: 10.1001/jama.2023.3651
  • Roberts JA, Taccone FS, Lipman JUP. Understanding PK/PD. Intensive care Med. 2016 Nov;42(11):1797–1800. doi: 10.1007/s00134-015-4032-6
  • Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009 Mar;37(3):840–851; quiz 859. doi: 10.1097/CCM.0b013e3181961bff
  • Perez Ruiz de Garibay A, Kortgen A, Leonhardt J, et al. Critical care hepatology: definitions, incidence, prognosis and role of liver failure in critically ill patients. Crit Care. [2022 Sep 26];26(1):289. doi: 10.1186/s13054-022-04163-1
  • Shaikhouni S, Yessayan L. Management of acute kidney injury/renal replacement therapy in the intensive care unit. Surg Clin North Am. 2022 Feb;102(1):181–198. doi: 10.1016/j.suc.2021.09.013
  • Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012 May;81(9):819–825. doi: 10.1038/ki.2011.339
  • Woznica EA, Inglot M, Woznica RK, et al. Liver dysfunction in sepsis. Adv Clin Exp Med. 2018 Apr;27(4):547–551. doi: 10.17219/acem/68363
  • Vilay AM, Churchwell MD, Mueller BA. Clinical review: drug metabolism and nonrenal clearance in acute kidney injury. Crit Care. 2008;12(6):235. doi: 10.1186/cc7093
  • Metkus TS, Lindsley J, Fair L, et al. Quality of heart failure care in the intensive care unit. J Card Fail. 2021 Oct;27(10):1111–1125. doi: 10.1016/j.cardfail.2021.08.001
  • Mangoni AA, Jarmuzewska EA. The influence of heart failure on the pharmacokinetics of cardiovascular and non-cardiovascular drugs: a critical appraisal of the evidence. Br J Clin Pharmacol. 2019 Jan;85(1):20–36. doi: 10.1111/bcp.13760
  • Sette H, Hughes RD, Langley PG, et al. Heparin response and clearance in acute and chronic liver disease. Thromb Haemost. [1985 Oct 30];54(3):591–594. doi: 10.1055/s-0038-1660076
  • Aursulesei V, Costache II. Anticoagulation in chronic kidney disease: from guidelines to clinical practice. Clin Cardiol. 2019 Aug;42(8):774–782. doi: 10.1002/clc.23196
  • Udy AA, Roberts JA, Boots RJ, et al. Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet. 2010;49(1):1–16. doi: 10.2165/11318140-000000000-00000
  • Kamidani R, Okada H, Kawasaki Y, et al. Impact of augmented renal clearance on anticoagulant therapy in critically ill patients with coronavirus disease 2019: a retrospective cohort study. J Infect Chemother. 2024 Feb;30(2):111–117. doi: 10.1016/j.jiac.2023.09.017
  • Barras M, Legg A. Drug dosing in obese adults. Aust Prescr. 2017 Oct;40(5):189–193. doi: 10.18773/austprescr.2017.053
  • Floroff CK, Palm NM, Steinberg DH, et al. Higher maximum doses and infusion rates compared with standard unfractionated heparin therapy are associated with adequate anticoagulation without increased bleeding in both obese and nonobese patients with cardiovascular indications. Pharmacotherapy. 2017 Apr;37(4):393–400. doi: 10.1002/phar.1904
  • George C, Barras M, Coombes J, et al. Unfractionated heparin dosing in obese patients. Int J Clin Pharm. 2020 Apr;42(2):462–473. doi: 10.1007/s11096-020-01004-5
  • Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004 Sep;126(3 Suppl):188S–203S. doi: 10.1378/chest.126.3_suppl.188S
  • Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49(2):71–87. doi: 10.2165/11318100-000000000-00000
  • Riney JN, Hollands JM, Smith JR, et al. Identifying optimal initial infusion rates for unfractionated heparin in morbidly obese patients. Ann Pharmacother. 2010 Jul;44(7–8):1141–1151. doi: 10.1345/aph.1P088
  • Hohner EM, Kruer RM, Gilmore VT, et al. Unfractionated heparin dosing for therapeutic anticoagulation in critically ill obese adults. J Crit Care. 2015 Apr;30(2):395–399. doi: 10.1016/j.jcrc.2014.11.020
  • Tse E, Khurana R, Clarke G, et al. Using anti-Xa level for adjusting intravenous unfractionated heparin infusion in peripartum thromboembolic disease. Obstet Med. 2019 Sep;12(3):146–150. doi: 10.1177/1753495X18772993
  • Avram MJ. Pharmacokinetic studies in pregnancy. Semin Perinatol. 2020 Apr;44(3):151227. doi: 10.1016/j.semperi.2020.151227
  • Raschke RA, Guidry JR, Foley MR. Apparent heparin resistance from elevated factor VIII during pregnancy. Obstet Gynecol. 2000 Nov;96(5):804–806. doi: 10.1016/S0029-7844(00)01053-X
  • Chunilal SD, Young E, Johnston MA, et al. The APTT response of pregnant plasma to unfractionated heparin. Thromb Haemost. 2002 Jan;87(1):92–97. doi: 10.1055/s-0037-1612949
  • Clark NP, Delate T, Cleary SJ, et al. Analysis of unfractionated heparin dose requirements to target therapeutic anti-Xa intensity during pregnancy. Thromb Res. 2010 May;125(5):402–405. doi: 10.1016/j.thromres.2009.07.014
  • Pariente G, Leibson T, Carls A, et al. Pregnancy-associated changes in pharmacokinetics: a systematic review. PLoS Med. 2016 Nov;13(11):e1002160. doi: 10.1371/journal.pmed.1002160
  • Rachoin JS, Weisberg LS. Renal replacement therapy in the ICU. Crit Care Med. 2019 May;47(5):715–721. doi: 10.1097/CCM.0000000000003701
  • Brandenburger T, Dimski T, Slowinski T, et al. Renal replacement therapy and anticoagulation. Best Pract Res Clin Anaesthesiol. 2017 Sep;31(3):387–401. doi: 10.1016/j.bpa.2017.08.005
  • Wald R, Beaubien-Souligny W, Chanchlani R, et al. Delivering optimal renal replacement therapy to critically ill patients with acute kidney injury. Intensive care Med. 2022 Oct;48(10):1368–1381. doi: 10.1007/s00134-022-06851-6
  • Musalem P, Pedreros-Rosales C, Muller-Ortiz H. Anticoagulation in renal replacement therapies: Why heparin should be abandoned in critical ill patients? Int Urol Nephrol. [2023 Sep 27];56(4):1383–1393. doi: 10.1007/s11255-023-03805-9
  • Singh S. Anticoagulation during renal replacement therapy. Indian J Crit Care Med. 2020 Apr;24(Suppl 3):S112–S116. doi: 10.5005/jp-journals-10071-23412
  • Legrand M, Tolwani A. Anticoagulation strategies in continuous renal replacement therapy. Semin Dial. 2021 Nov;34(6):416–422. doi: 10.1111/sdi.12959
  • Morabito S, Guzzo I, Vitaliano E, et al. Pharmacokinetic principles and drug-dosing adjustments during continuous renal replacement therapies (CRRT). G Ital Nefrol. 2006 May;23(Suppl 36):S127–38.
  • Jamal JA, Mueller BA, Choi GY, et al. How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn Microbiol Infect Dis. 2015 May;82(1):92–103. doi: 10.1016/j.diagmicrobio.2015.01.013
  • Hoff BM, Maker JH, Dager WE, et al. Antibiotic dosing for critically Ill adult patients receiving intermittent hemodialysis, prolonged intermittent renal replacement therapy, and continuous renal replacement therapy: an update. Ann Pharmacother. 2020 Jan;54(1):43–55. doi: 10.1177/1060028019865873
  • Hirsh J, Warkentin TE, Shaughnessy SG, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001 Jan;119(1):64S–94S. doi: 10.1378/chest.119.1_suppl.64S
  • Olson SR, Murphree CR, Zonies D, et al. Thrombosis and bleeding in extracorporeal membrane oxygenation (ECMO) without anticoagulation: a systematic review. Asaio J. [2021 Mar 1];67(3):290–296. doi: 10.1097/MAT.0000000000001230
  • Chlebowski MM, Baltagi S, Carlson M, et al. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit Care. [2020 Jan 20];24(1):19. doi: 10.1186/s13054-020-2726-9
  • Sklar MC, Sy E, Lequier L, et al. Anticoagulation practices during venovenous extracorporeal membrane oxygenation for respiratory failure. A systematic review. Ann Am Thorac Soc. 2016 Dec;13(12):2242–2250. doi: 10.1513/AnnalsATS.201605-364SR
  • McMichael ABV, Ryerson LM, Ratano D, et al. 2021 ELSO adult and pediatric anticoagulation guidelines. Asaio J. 2022 [2022 Mar 1];68(3):303–310. doi: 10.1097/MAT.0000000000001652
  • Shekar K, Fraser JF, Smith MT, et al. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care. 2012 Dec;27(6):741 e9–18. doi: 10.1016/j.jcrc.2012.02.013
  • Durrani J, Malik F, Ali N, et al. To be or not to be a case of heparin resistance. J Community Hosp Intern Med Perspect. 2018;8(3):145–148. doi: 10.1080/20009666.2018.1466599
  • Rodgers GM, Mahajerin A. Antithrombin therapy: current state and future outlook. Clin Appl Thromb Hemost. 2023 Jan;29:10760296231205279. doi: 10.1177/10760296231205279
  • Kumar G, Maskey A. Anticoagulation in ECMO patients: an overview. Indian J Thorac Cardiovasc Surg. 2021 Apr;37(Suppl 2):241–247. doi: 10.1007/s12055-021-01176-3
  • Levy JH, Connors JM, Longo DL. Heparin resistance — clinical perspectives and management strategies. N Engl J Med. [2021 Aug 26];385(9):826–832. doi: 10.1056/NEJMra2104091
  • Uprichard J, Manning RA, Laffan MA. Monitoring heparin anticoagulation in the acute phase response. Br J Haematol. 2010 May;149(4):613–619. doi: 10.1111/j.1365-2141.2010.08129.x
  • Levy JH, Sniecinski RM, Maier CL, et al. Finding a common definition of heparin resistance in adult cardiac surgery: communication from the ISTH SSC subcommittee on perioperative and critical care thrombosis and hemostasis. J Thromb Haemost. 2024 Apr;22(4):1249–1257. doi: 10.1016/j.jtha.2024.01.001
  • Levy JH, Sniecinski RM, Rocca B, et al. Defining heparin resistance: communication from the ISTH SSC subcommittee of perioperative and critical care thrombosis and hemostasis. J Thromb Haemost. 2023 Dec;21(12):3649–3657. doi: 10.1016/j.jtha.2023.08.013
  • Levy JH, Frere C, Koster A. Resistance to unfractionated heparin in the ICU: evaluation and management options. Intensive care Med. 2023 Aug;49(8):1005–1007. doi: 10.1007/s00134-023-07103-x
  • Anderson JA, Saenko EL. Heparin resistance. Br J Anaesth. 2002 Apr;88(4):467–469. doi: 10.1093/bja/88.4.467
  • Cirisano FD, Lee S, Greenspoon JS. Apparent heparin resistance form elevated factor VIII in a patient with postoperative deep venous thrombosis. A case report. J Reprod Med. 1996 Mar;41(3):191–194.
  • Ng VL. Anticoagulation monitoring. Clin Lab Med. 2009 Jun;29(2):283–304. doi: 10.1016/j.cll.2009.05.003
  • Arepally GM, Padmanabhan A. Heparin-induced thrombocytopenia: a focus on thrombosis. Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):141–152. doi: 10.1161/ATVBAHA.120.315445
  • Ahmed I, Majeed A, Powell R. Heparin induced thrombocytopenia: diagnosis and management update. Postgrad Med J. 2007 Sep;83(983):575–582. doi: 10.1136/pgmj.2007.059188
  • Zhou P, Yin JX, Tao HL, et al. Pathogenesis and management of heparin-induced thrombocytopenia and thrombosis. Clin Chim Acta. 2020 May;504:73–80. doi: 10.1016/j.cca.2020.02.002
  • Linkins LA, Dans AL, Moores LK, et al. Treatment and prevention of heparin-induced thrombocytopenia: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 Feb;141(2 Suppl):e495–e530. doi: 10.1378/chest.11-2303
  • Crowther M, Cook D, Guyatt G, et al. Heparin-induced thrombocytopenia in the critically ill: interpreting the 4Ts test in a randomized trial. J Crit Care. 2014 Jun;29(3):470 e7–15. doi: 10.1016/j.jcrc.2014.02.004
  • Cuker A, Gimotty PA, Crowther MA, et al. Predictive value of the 4Ts scoring system for heparin-induced thrombocytopenia: a systematic review and meta-analysis. Blood. [2012 Nov 15];120(20):4160–4167. doi: 10.1182/blood-2012-07-443051
  • Cuker A, Arepally GM, Chong BH, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv. [2018 Nov 27];2(22):3360–3392. doi: 10.1182/bloodadvances.2018024489
  • Hvas AM, Favaloro EJ, Hellfritzsch M. Heparin-induced thrombocytopenia: pathophysiology, diagnosis and treatment. Expert Rev Hematol. 2021 Apr;14(4):335–346. doi: 10.1080/17474086.2021.1905512
  • Warnock LB, Huang D. Heparin. Treasure Island (FL): StatPearls; 2023.
  • Raschke RA, Reilly BM, Guidry JR, et al. The weight-based heparin dosing nomogram compared with a “standard care” nomogram. A randomized controlled trial. Ann Intern Med. [1993 Nov 1];119(9):874–881. doi: 10.7326/0003-4819-119-9-199311010-00002
  • Whitman-Purves E, Coons JC, Miller T, et al. Performance of anti-factor Xa versus activated partial thromboplastin time for heparin monitoring using multiple nomograms. Clin Appl Thromb Hemost. 2018 Mar;24(2):310–316. doi: 10.1177/1076029617741363
  • Dalton H, Martin M, Garcia-Filion P, et al. Activated clotting time in inpatient diagnostic and interventional settings. J Thromb Thrombolysis. 2022 Nov;54(4):660–668. doi: 10.1007/s11239-022-02672-y
  • Chiasakul T, Mullier F, Lecompte T, et al. Laboratory monitoring of heparin anticoagulation in hemodialysis: rationale and strategies. Semin Nephrol. 2024 Jan;43(6):151477. doi: 10.1016/j.semnephrol.2023.151477
  • Hong JI, Hwang J, Shin HJ. Satisfactory outcome with low activated clotting time in extracorporeal membrane oxygenation. Rev Cardiovasc Med. [2021 Dec 22];22(4):1589–1594. doi: 10.31083/j.rcm2204164
  • Spinler SA, Wittkowsky AK, Nutescu EA, et al. Anticoagulation monitoring part 2: unfractionated heparin and low-molecular-weight heparin. Ann Pharmacother. 2005 Jul;39(7–8):1275–1285. doi: 10.1345/aph.1E524
  • Mottillo S, Filion KB, Joseph L, et al. Defining optimal activated clotting time for percutaneous coronary intervention: a systematic review and Bayesian meta-regression. Catheter Cardiovasc Interv. [2017 Feb 15];89(3):351–366. doi: 10.1002/ccd.26652
  • Lobato RL, Despotis GJ, Levy JH, et al. Anticoagulation management during cardiopulmonary bypass: a survey of 54 North American institutions. J Thorac Cardiovasc Surg. 2010 Jun;139(6):1665–1666. doi: 10.1016/j.jtcvs.2010.02.038
  • Falter F, Razzaq N, John M, et al. Clinical evaluation of measuring the act during elective cardiac surgery with two different devices. J Extra Corpor Technol. 2018 Mar;50(1):38–43. doi: 10.1051/ject/201850038
  • Byun JH, Jang IS, Kim JW, et al. Establishing the heparin therapeutic range using aPTT and anti-Xa measurements for monitoring unfractionated heparin therapy. Blood Res. 2016 Sep;51(3):171–174. doi: 10.5045/br.2016.51.3.171
  • Brill-Edwards P, Ginsberg JS, Johnston M, et al. Establishing a therapeutic range for heparin therapy. Ann Intern Med. [1993 Jul 15];119(2):104–109. doi: 10.7326/0003-4819-119-2-199307150-00002
  • Cruickshank MK, Levine MN, Hirsh J, et al. A standard heparin nomogram for the management of heparin therapy. Arch Intern Med. 1991 Feb;151(2):333–337. doi: 10.1001/archinte.1991.00400020085018
  • Swayngim R, Preslaski C, Burlew CC, et al. Comparison of clinical outcomes using activated partial thromboplastin time versus antifactor-Xa for monitoring therapeutic unfractionated heparin: a systematic review and meta-analysis. Thromb Res. 2021 Dec;208:18–25. doi: 10.1016/j.thromres.2021.10.010
  • Delmas C, Jacquemin A, Vardon-Bounes F, et al. Anticoagulation Monitoring Under ECMO support: a comparative study between the activated coagulation time and the anti-xa activity assay. J Intensive Care Med. 2020 Jul;35(7):679–686. doi: 10.1177/0885066618776937
  • Liveris A, Bello RA, Friedmann P, et al. Anti-factor Xa assay is a superior correlate of heparin dose than activated partial thromboplastin time or activated clotting time in pediatric extracorporeal membrane oxygenation*. Pediatr Crit Care Med. 2014 Feb;15(2):e72–9. doi: 10.1097/PCC.0000000000000028
  • Hedeland Y, Gustafsson CM, Touza Z, et al. Hemolysis interference in 10 coagulation assays on an instrument with viscosity-based, chromogenic, and turbidimetric clot detection. Int J Lab Hematol. 2020 Jun;42(3):341–349. doi: 10.1111/ijlh.13188
  • Khan J, Chandler WL. Interference in the anti-Xa heparin activity assay due to hemolysis and icterus during pediatric extracorporeal life support. Artif Organs. 2019 Sep;43(9):880–887. doi: 10.1111/aor.13467
  • Volod O, Bunch CM, Zackariya N, et al. Viscoelastic hemostatic assays: a primer on legacy and new generation Devices. J Clin Med. [2022 Feb 7];11(3):860. doi: 10.3390/jcm11030860
  • Burton AG, Jandrey KE. Use of thromboelastography in clinical practice. Vet Clin North Am Small Anim Pract. 2020 Nov;50(6):1397–1409. doi: 10.1016/j.cvsm.2020.08.001
  • Hasija S, Kapoor PM. Effect of heparin and bivalirudin on the kinetics of clot formation: Viscoelastic coagulation testing. Ann Card Anaesth. 2017 Jan;20(1):122. doi: 10.4103/0971-9784.197855
  • Othman M, Kaur H. Thromboelastography (TEG). Methods Mol Biol. 2017;1646:533–543.
  • Infanger L, Dibiasi C, Schaden E, et al. Comparison of the new viscoelastic coagulation analyzer ClotPro(R) with ROTEM(R) Delta and Conventional Coagulation Tests in Critically Ill Patients with COVID-19. Front Med. 2021;8:777145. doi: 10.3389/fmed.2021.777145
  • Buscher H, Zhang D, Nair P. A pilot, randomised controlled trial of a rotational thromboelastometry-based algorithm to treat bleeding episodes in extracorporeal life support: the TEM protocol in ECLS study (TEMPEST). Crit Care Resusc. 2017 Oct;19(Suppl 1):29–36.
  • Panigada M, Ei G, Brioni M, et al. Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: a safety and feasibility pilot study. Ann Intensive Care. [2018 Jan 16];8(1):7. doi: 10.1186/s13613-017-0352-8
  • Larkins MC, Thombare A. Point-of-care testing. Treasure Island (FL): StatPearls; 2023.
  • Goble JA, Rocafort PT. Point-of-Care Testing. J Pharm Pract. 2017 Apr;30(2):229–237. doi: 10.1177/0897190015587696
  • Niederdockl J, Dempfle CE, Schonherr HR, et al. Point-of-care PT and aPTT in patients with suspected deficiencies of coagulation factors. Int J Lab Hematol. 2016 Aug;38(4):426–434. doi: 10.1111/ijlh.12519
  • Lardinois B, Hardy M, Michaux I, et al. Monitoring of unfractionated heparin therapy in the intensive care unit using a point-of-care aPTT: a comparative, longitudinal observational study with laboratory-based aPTT and anti-xa activity measurement. J Clin Med. [2022 Feb 28];11(5):1338. doi: 10.3390/jcm11051338
  • Karigowda L, Deshpande K, Jones S, et al. The accuracy of a point of care measurement of activated partial thromboplastin time in intensive care patients. Pathology. 2019 Oct;51(6):628–633. doi: 10.1016/j.pathol.2019.05.002
  • Arachchillage DRJ, Vipond L, Laffan M. Limitations on point care APTT for monitoring of unfractionated heparin in intensive care patients. Thromb Res. 2019 Sep;181:124–126. doi: 10.1016/j.thromres.2019.07.029
  • Douglas AD, Jefferis J, Sharma R, et al. Evaluation of point-of-care activated partial thromboplastin time testing by comparison to laboratory-based assay for control of intravenous heparin. Angiology. 2009 Jun;60(3):358–361. doi: 10.1177/0003319709332958
  • McRae HL, Militello L, Refaai MA. Updates in anticoagulation therapy monitoring. Biomedicines. [2021 Mar 6];9(3):262. doi: 10.3390/biomedicines9030262
  • Hussein HM, Georgiadis AL, Qureshi AI. Point-of-care testing for anticoagulation monitoring in neuroendovascular procedures. AJNR Am J Neuroradiol. 2012 Aug;33(7):1211–1220. doi: 10.3174/ajnr.A2621
  • Vermeiren P, Vandevelde A, Peperstraete H, et al. Monitoring of heparin therapy beyond the anti-Xa activity assay: Evaluation of a thrombin generation assay. Int J Lab Hematol. 2022 Aug;44(4):785–795. doi: 10.1111/ijlh.13836
  • Wu Y, Lu Y, Zhang J. Thrombin generation assay: the present and the future. Blood Coagul Fibrinolysis. [2023 Jan 1];34(1):1–7. doi: 10.1097/MBC.0000000000001170
  • Benoit R, Nougier C, Desmurs-Clavel H, et al. The modification of the thrombin generation assay for the clinical assessment of hypercoagulability in patients receiving heparin therapy. Int J Lab Hematol. 2022 Apr;44(2):371–378. doi: 10.1111/ijlh.13735
  • Binder NB, Depasse F, Mueller J, et al. Clinical use of thrombin generation assays. J Thromb Haemost. 2021 Dec;19(12):2918–2929. doi: 10.1111/jth.15538
  • Cohen H, Efthymiou M, Devreese KMJ. Monitoring of anticoagulation in thrombotic antiphospholipid syndrome. J Thromb Haemost. 2021 Apr;19(4):892–908. doi: 10.1111/jth.15217
  • Winter WE, Flax SD, Harris NS. Coagulation Testing in the Core Laboratory. Lab Med. [2017 Nov 8];48(4):295–313. doi: 10.1093/labmed/lmx050
  • Raber MN. Coagulation Tests. In:Walker H, Hall W, and Hurst J, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworth Publishers, a division of Reed Publishing; 1990. p. 741. PMID: 21250108.
  • Apipongrat D, Police P, Lamool R, et al. Validation of high concentrated thrombin time assay for unfractionated heparin monitoring. J Clin Lab Anal. 2022 Oct;36(10):e24695. doi: 10.1002/jcla.24695
  • Bounameaux H, Marbet GA, Lammle B, et al. Monitoring of heparin treatment. Comparison of thrombin time, activated partial thromboplastin time, and plasma heparin concentration, and analysis of the behavior of antithrombin III. Am J Clin Pathol. 1980 Jul;74(1):68–73. doi: 10.1093/ajcp/74.1.68
  • Smith SB, Geske JB, Maguire JM, et al. Early anticoagulation is associated with reduced mortality for acute pulmonary embolism. Chest. 2010 Jun;137(6):1382–1390. doi: 10.1378/chest.09-0959
  • Malato A, Dentali F, Siragusa S, et al. The impact of deep vein thrombosis in critically ill patients: a meta-analysis of major clinical outcomes. Blood Transfus. 2015 Oct;13(4):559–568. doi: 10.2450/2015.0277-14
  • Neuenfeldt FS, Weigand MA, Fischer D. Coagulopathies in intensive care medicine: balancing act between thrombosis and bleeding. J Clin Med. [2021 Nov 18];10(22):5369. doi: 10.3390/jcm10225369
  • Minet C, Potton L, Bonadona A, et al. Venous thromboembolism in the ICU: main characteristics, diagnosis and thromboprophylaxis. Crit Care. [2015 Aug 18];19(1):287. doi: 10.1186/s13054-015-1003-9
  • Ejaz A, Ahmed MM, Tasleem A, et al. Thromboprophylaxis in intensive care unit patients: a literature review. Cureus. [2018 Sep 21];10(9):e3341. doi: 10.7759/cureus.3341
  • Selby R, Geerts W, Ofosu FA, et al. Hypercoagulability after trauma: hemostatic changes and relationship to venous thromboembolism. Thromb Res. 2009 Jul;124(3):281–287. doi: 10.1016/j.thromres.2008.10.002
  • Prior SM, Cohen MJ, Conroy AS, et al. Correlation between factor (F)xia, FIXa and tissue factor and trauma severity. J Trauma Acute Care Surg. 2017 Jun;82(6):1073–1079. doi: 10.1097/TA.0000000000001449
  • Mi YH, Xu MY. Trauma-induced pulmonary thromboembolism: What’s update? Chin J Traumatol. 2022 Mar;25(2):67–76. doi: 10.1016/j.cjtee.2021.08.003
  • Martini WZ. Coagulation complications following trauma. Mil Med Res. 2016;3(1):35. doi: 10.1186/s40779-016-0105-2
  • Subat YW, Rayes H, Hanson AC, et al. Risk of major bleeding associated with aspirin use in non-surgical critically ill patients receiving therapeutic anticoagulation. J Crit Care. 2020 Aug;58:34–40. doi: 10.1016/j.jcrc.2020.04.003
  • Moller MH, Skrifvars MB, Azoulay E. ICM focus on thrombosis and bleeding. Intensive care Med. 2017 Dec;43(12):1910–1911. doi: 10.1007/s00134-017-4966-y
  • Johnston B, Nelson A, Waite AC, et al. Anticoagulation strategies in critical care for the treatment of atrial fibrillation: a protocol for a systematic review and meta-analysis. BMJ Open. [2020 Oct 20];10(10):e037591. doi: 10.1136/bmjopen-2020-037591
  • Levi M, Opal SM. Coagulation abnormalities in critically ill patients. Crit Care. 2006;10(4):222. doi: 10.1186/cc4975
  • Lisman T. Bleeding and thrombosis in patients with cirrhosis: what’s new? Hemasphere. 2023 Jun;7(6):e886. doi: 10.1097/HS9.0000000000000886
  • Tripodi A, Primignani M, D’Ambrosio R, et al. Reappraisal of the conventional hemostasis tests as predictors of perioperative bleeding in the era of rebalanced hemostasis in cirrhosis. Hepatology. [2024 Jan 12]. doi: 10.1097/HEP.0000000000000756
  • Sinegre T, Duron C, Lecompte T, et al. Intraindividual variability over time of thrombin generation in patients with cirrhosis. J Thromb Haemost. 2023 Jun;21(6):1441–1452. doi: 10.1016/j.jtha.2023.02.002
  • Kujovich JL. Coagulopathy in liver disease: a balancing act. Hematology Am Soc Hematol Educ Program. 2015;2015(1):243–249. doi: 10.1182/asheducation-2015.1.243
  • Thachil J. Relevance of clotting tests in liver disease. Postgrad Med J. 2008 Apr;84(990):177–181. doi: 10.1136/pgmj.2007.066415
  • Potze W, Arshad F, Adelmeijer J, et al. Routine coagulation assays underestimate levels of antithrombin-dependent drugs but not of direct anticoagulant drugs in plasma from patients with cirrhosis. Br J Haematol. 2013 Dec;163(5):666–673. doi: 10.1111/bjh.12593
  • Fuentes A, Gordon-Burroughs S, Hall JB, et al. Comparison of anti-Xa and activated partial thromboplastin time monitoring for heparin dosing in patients with cirrhosis. Ther Drug Monit. 2015 Feb;37(1):40–44. doi: 10.1097/FTD.0000000000000105
  • Potze W, Lisman T. Issues with monitoring of unfractionated heparin in cirrhosis. Ther Drug Monit. 2015 Apr;37(2):279–280. doi: 10.1097/FTD.0000000000000132
  • Anton FI, Rus PA, Hagau N. Monitoring anticoagulation with unfractionated heparin on renal replacement therapy. which is the best aPTT sampling site? J Crit Care Med (Targu Mures). 2020 Jul;6(3):159–166. doi: 10.2478/jccm-2020-0024
  • Deep A. Anticoagulation strategies in continuous kidney replacement therapy - does one size fit all? Pediatr Nephrol. 2022 Nov;37(11):2525–2529. doi: 10.1007/s00467-022-05567-5
  • Feih JT, Wallskog KE, Rinka JRG, et al. Heparin monitoring with an anti-xa protocol compared to activated clotting time in patients on temporary mechanical circulatory support. Ann Pharmacother. 2022 May;56(5):513–523. doi: 10.1177/10600280211039582
  • Atallah S, Liebl M, Fitousis K, et al. Evaluation of the activated clotting time and activated partial thromboplastin time for the monitoring of heparin in adult extracorporeal membrane oxygenation patients. Perfusion. 2014 Sep;29(5):456–461. doi: 10.1177/0267659114524264
  • Kulig CE, Schomer KJ, Black HB, et al. Activated partial thromboplastin time versus anti-factor xa monitoring of heparin anticoagulation in adult venoarterial extracorporeal membrane oxygenation patients. Asaio J. [2021 Apr 1];67(4):411–415. doi: 10.1097/MAT.0000000000001246
  • Figueroa Villalba CA, Brogan TV, Dm M, et al. Conversion from activated clotting time to anti-xa heparin activity assay for heparin monitoring during extracorporeal membrane oxygenation. Crit Care Med. 2020 Dec;48(12):e1179–e1184. doi: 10.1097/CCM.0000000000004615
  • Kostousov V, Nguyen K, Hundalani SG, et al. The influence of free hemoglobin and bilirubin on heparin monitoring by activated partial thromboplastin time and anti-Xa assay. Arch Pathol Lab Med. 2014 Nov;138(11):1503–1506. doi: 10.5858/arpa.2013-0572-OA
  • Mahmoud L, Zullo AR, McKaig D, et al. Concordance between activated partial thromboplastin time and antifactor xa assay for monitoring unfractionated heparin in hospitalized hyperbilirubinemic patients. R I Med J (2013). 2016 Mar 1;99(3):33–37.
  • Molhoek JE, de Groot PG, Urbanus RT. The Lupus Anticoagulant Paradox. Semin Thromb Hemost. 2018 Jul;44(5):445–452. doi: 10.1055/s-0037-1606190
  • Falconer N, Abdel-Hafez A, Scott IA, et al. Systematic review of machine learning models for personalised dosing of heparin. Br J Clin Pharmacol. 2021 Nov;87(11):4124–4139. doi: 10.1111/bcp.14852
  • Garcia DA, Baglin TP, Weitz JI, et al. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 Feb;141(2 Suppl):e24–e43. doi: 10.1378/chest.11-2291
  • Vandiver JW, Vondracek TG. Antifactor Xa levels versus activated partial thromboplastin time for monitoring unfractionated heparin. Pharmacotherapy. 2012 Jun;32(6):546–558. doi: 10.1002/j.1875-9114.2011.01049.x
  • Guervil DJ, Rosenberg AF, Winterstein AG, et al. Activated partial thromboplastin time versus antifactor Xa heparin assay in monitoring unfractionated heparin by continuous intravenous infusion. Ann Pharmacother. 2011 Jul;45(7–8):861–868. doi: 10.1345/aph.1Q161
  • Williams-Norwood T, Caswell M, Milner B, et al. Design and Implementation of an anti-factor Xa heparin monitoring protocol. AACN Adv Crit Care. [2020 Jun 15];31(2):129–137. doi: 10.4037/aacnacc2020132
  • Fruge KS, Lee YR. Comparison of unfractionated heparin protocols using antifactor Xa monitoring or activated partial thrombin time monitoring. Am J Health Syst Pharm. [2015 Sep 1];72(17 Suppl 2):S90–7. doi: 10.2146/sp150016
  • Coons JC, Iasella CJ, Thornberg M, et al. Clinical outcomes with unfractionated heparin monitored by anti-factor Xa vs. activated partial Thromboplastin time. Am J Hematol. 2019 Sep;94(9):1015–1019. doi: 10.1002/ajh.25565
  • Wahking RA, Hargreaves RH, Lockwood SM, et al. Comparing anti-factor xa and activated partial thromboplastin levels for monitoring unfractionated heparin. Ann Pharmacother. 2019 Aug;53(8):801–805. doi: 10.1177/1060028019835202
  • Macedo KA, Tatarian P, Eugenio KR. Influence of direct oral anticoagulants on anti-factor Xa measurements utilized for monitoring heparin. Ann Pharmacother. 2018 Feb;52(2):154–159. doi: 10.1177/1060028017729481
  • Faust AC, Kanyer D, Wittkowsky AK. Managing transitions from oral factor Xa inhibitors to unfractionated heparin infusions. Am J Health Syst Pharm. [2016 Dec 15];73(24):2037–2041. doi: 10.2146/ajhp150596
  • Samuel S, Allison TA, Sharaf S, et al. Antifactor Xa levels vs. activated partial thromboplastin time for monitoring unfractionated heparin. A pilot study. J Clin Pharm Ther. 2016 Oct;41(5):499–502. doi: 10.1111/jcpt.12415

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.