51
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacotherapies for multidrug-resistant gram-positive infections: current options and beyond

, , , , & ORCID Icon
Pages 1027-1037 | Received 18 Feb 2024, Accepted 07 Jun 2024, Published online: 13 Jun 2024

References

  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi: 10.1016/S1473-3099(17)30753-3
  • Butler MS, Hansford KA, Blaskovich MA, et al. Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo). 2014;67(9):631–644. doi: 10.1038/ja.2014.111
  • Ippolito G, Leone S, Lauria FN, et al. Methicillin-resistant Staphylococcus aureus: the superbug. Int J Infect Dis. 2010;14 Suppl 4:S7–11. doi: 10.1016/j.ijid.2010.05.003
  • Soriano A, Marco F, Martínez JA, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46(2):193–200. doi: 10.1086/524667
  • Leone S, Cascella M, Pezone I, et al. New antibiotics for the treatment of serious infections in intensive care unit patients. Curr Med Res Opin. 2019;35(8):1331–1334. doi: 10.1080/03007995.2019.1583025
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious Methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American society of health-system pharmacists, the infectious diseases society of America, the pediatric infectious diseases society, and the society of infectious diseases pharmacists. Pharmacotherapy. 2020;40(4):363–367. doi: 10.1002/phar.2376
  • Esposito S, Russo E, De Simone G, et al. Diagnostic and therapeutic appropriateness in bone and joint infections: results of a national survey. J Chemother. 2016;28(3):191–197. doi: 10.1179/1973947815Y.0000000012
  • Esposito S, Leone S, Noviello S, et al. Outpatient parenteral antibiotic therapy in the elderly: an Italian observational multicenter study. J Chemother. 2009;21(2):193–198. doi: 10.1179/joc.2009.21.2.193
  • Fiore M, Taccone FS, Leone S. Choosing the appropriate pharmacotherapy for multidrug-resistant gram positive infections. Expert Opin Pharmacother. 2018;19(14):1517–1521. doi: 10.1080/14656566.2018.1512584
  • Wenzler E, Rodvold KA. Telavancin: the long and winding road from discovery to food and drug administration approvals and future directions. Clin Infect Dis. 2015;61(2):S38–47. doi: 10.1093/cid/civ522
  • Karlowsky JA, Nichol K, Zhanel GG. Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis. 2015;61(2):S58–68. doi: 10.1093/cid/civ534
  • Stryjewski ME, Graham DR, Wilson SE, et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis. 2008;46(11):1683–1693. doi: 10.1086/587896
  • Pushkin R, Barriere SL, Wang W, et al. Telavancin for acute bacterial skin and skin structure infections, a post hoc analysis of the phase 3 ATLAS trials in light of the 2013 FDA guidance. Antimicrob Agents Chemother. 2015;59(10):6170–6174. doi: 10.1128/AAC.00471-15
  • Rubinstein E, Lalani T, Corey GR, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011;52(1):31–40. doi: 10.1093/cid/ciq031
  • Corey GR, Kollef MH, Shorr AF, et al. Telavancin for hospital-acquired pneumonia: clinical response and 28-day survival. Antimicrob Agents Chemother. 2014;58(4):2030–2037. doi: 10.1128/AAC.02330-13
  • Torres A, Rubinstein E, Corey GR, et al. Analysis of phase 3 telavancin nosocomial pneumonia data excluding patients with severe renal impairment and acute renal failure. J Antimicrob Chemother. 2014;69(4):1119–1126. doi: 10.1093/jac/dkt490
  • Heidary M, Khosravi AD, Khoshnood S, et al. Daptomycin. J Antimicrob Chemother. 2018;73(1):1–11. doi: 10.1093/jac/dkx349
  • Gonzalez-Ruiz A, Seaton RA, Hamed K. Daptomycin: an evidence-based review of its role in the treatment of gram-positive infections. Infect Drug Resist. 2016;9:47–58. doi: 10.2147/IDR.S99046
  • McKinnell JA, Arias CA. Editorial commentary: linezolid vs daptomycin for vancomycin-resistant enterococci: the evidence gap between trials and clinical experience. Clin Infect Dis. 2015;61(6):879–882. doi: 10.1093/cid/civ449
  • Leone S, Noviello S, Esposito S. Combination antibiotic therapy for the treatment of infective endocarditis due to enterococci. Infection. 2016;44(3):273–281. doi: 10.1007/s15010-015-0836-0
  • Britt NS, Potter EM, Patel N, et al. Comparative effectiveness and safety of standard-, medium-, and high-dose daptomycin strategies for the treatment of vancomycin-resistant enterococcal bacteremia among veterans affairs patients. Clin Infect Dis. 2017;64(5):605–613. doi: 10.1093/cid/ciw815
  • Chuang YC, Lin HY, Yang JL, et al. Influence of daptomycin doses on the outcomes of VRE bloodstream infection treated with high-dose daptomycin. J Antimicrob Chemother. 2022;77(8):2278–2287. doi: 10.1093/jac/dkac164
  • Guleri A, Utili R, Dohmen P, et al. Daptomycin for the treatment of infective endocarditis: results from European Cubicin® Outcomes Registry and Experience (EU-CORE). Infect Dis Ther. 2015;4(3):283–296. doi: 10.1007/s40121-015-0075-9
  • Malizos K, Sarma J, Seaton RA, et al. Daptomycin for the treatment of osteomyelitis and orthopaedic device infections: real-world clinical experience from a European registry. Eur J Clin Microbiol Infect Dis. 2016;35(1):111–118. doi: 10.1007/s10096-015-2515-6
  • Esposito S, Leone S, Noviello S, et al. Foot infections in diabetes (DFIs) in the out-patient setting: an Italian multicentre observational survey. Diabet Med. 2008;25(8):979–984. doi: 10.1111/j.1464-5491.2008.02507.x
  • Esposito S, Noviello S, Leone S. Dalbavancin for the treatment of acute bacterial skin and skin structure infections. Infez Med. 2015;23(4):313–317.
  • Billeter M, Zervos MJ, Chen AY, et al. Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic. Clin Infect Dis. 2008;46(4):577–583. doi: 10.1086/526772
  • Barberán J, de la Cuerda A, Barberán LC. Dalbavancin. Rev Esp Quimioter. 2021;34(Suppl1):26–28. doi: 10.37201/req/s01.07.2021
  • Boucher HW, Wilcox M, Talbot GH, et al. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med. 2014;370(23):2169–2179. doi: 10.1056/NEJMoa1310480
  • Gonzalez PL, Rappo U, Akinapelli K, et al. Outcomes in patients with staphylococcus aureus bacteremia treated with Dalbavancin in clinical trials. Infect Dis Ther. 2022;11(1):423–434. doi: 10.1007/s40121-021-00568-7
  • Gatti M, Andreoni M, Pea F, et al. Real-world use of Dalbavancin in the era of empowerment of outpatient antimicrobial treatment: a careful appraisal beyond approved indications focusing on unmet clinical needs. Drug Des Devel Ther. 2021;15:3349–3378. doi: 10.2147/DDDT.S313756
  • Taylor K, Williamson J, Luther V, et al. Evaluating the Use of Dalbavancin for off-label indications. Infect Dis Rep. 2022;14(2):266–272. doi: 10.3390/idr14020032
  • Cojutti PG, Rinaldi M, Gatti M, et al. Usefulness of therapeutic drug monitoring in estimating the duration of dalbavancin optimal target attainment in staphylococcal osteoarticular infections: a proof-of-concept. Int J Antimicrob Agents. 2021;58(5):106445. doi: 10.1016/j.ijantimicag.2021.106445
  • Cojutti PG, Rinaldi M, Zamparini E, et al. Population pharmacokinetics of dalbavancin and dosing consideration for optimal treatment of adult patients with staphylococcal osteoarticular infections. Antimicrob Agents Chemother. 2023;65(5):e02260–20. doi: 10.1128/AAC.02260-20
  • Zhanel GG, Calic D, Schweizer F, et al. New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs. 2010;70(7):859–886. doi: 10.2165/11534440-000000000-00000
  • Cairns KA, Udy AA, Peel TN, et al. Therapeutics for vancomycin-resistant enterococcal bloodstream infections. Clin Microbiol Rev. 2023;36(2):e0005922. doi: 10.1128/cmr.00059-22
  • Carvalhaes CG, Sader HS, Streit JM, et al. Activity of oritavancin against gram-positive pathogens causing bloodstream infections in the United States over 10 years: focus on drug-resistant enterococcal subsets (2010–2019). Antimicrob Agents Chemother. 2022;66(2):e0166721. doi: 10.1128/AAC.01667-21
  • Corey GR, Kabler H, Mehra P, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370(23):2180–2190. doi: 10.1056/NEJMoa1310422
  • Corey GR, Good S, Jiang H, et al. SinglE-dose oritavancin versus 7–10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study. Clin Infect Dis. 2015;60(2):254–262. doi: 10.1093/cid/ciu778
  • Corey GR, Arhin FF, Wikler MA, et al. Pooled analysis of single-dose oritavancin in the treatment of acute bacterial skin and skin-structure infections caused by gram-positive pathogens, including a large patient subset with methicillin-resistant staphylococcus aureus. Int J Antimicrob Agents. 2016;48(5):528–534. doi: 10.1016/j.ijantimicag.2016.07.019
  • Scoble PJ, Reilly J, Tillotson GS. Real-world use of oritavancin for the treatment of Osteomyelitis. Drugs Real World Outcomes. 2020;7(Suppl 1):46–54. doi: 10.1007/s40801-020-00194-8
  • Thomas G, Henao-Martínez AF, Franco-Paredes C, et al. Treatment of osteoarticular, cardiovascular, intravascular-catheter-related and other complicated infections with dalbavancin and oritavancin: a systematic review. Int J Antimicrob Agents. 2020;56(3):106069. doi: 10.1016/j.ijantimicag.2020.106069
  • Lupia T, De Benedetto I, Bosio R, et al. Role of oritavancin in the treatment of infective endocarditis, catheter- or device-related infections, bloodstream infections, and bone and prosthetic joint infections in humans: narrative review and possible developments. Life (Basel). 2023;13(4):959. doi: 10.3390/life13040959
  • Baiardi G, Cameran Caviglia M, Piras F, et al. The clinical efficacy of multidose oritavancin: a systematic review. Antibiotics (Basel). 2023;12(10):1498. doi: 10.3390/antibiotics12101498
  • Rose WE, Hutson PR. A two-dose oritavancin regimen using pharmacokinetic estimation analysis. Drugs Real World Outcomes. 2020 Jun;7(Suppl 1):36–40. doi: 10.1007/s40801-020-00188-6
  • Eliopoulos GM. Microbiology of drugs for treating multiply drug-resistant Gram-positive bacteria. J Infect. 2009;59(1):S17–24. doi: 10.1016/S0163-4453(09)60004-9
  • Ford CW, Zurenko GE, Barbachyn MR. The discovery of linezolid, the first oxazolidinone antibacterial agent. Curr Drug Targets Infect Disord. 2001;1(2):181–199. doi: 10.2174/1568005014606099
  • Brenciani A, Morroni G, Schwarz S, et al. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother. [2022 Sep 30];77(10):2596–2621. doi: 10.1093/jac/dkac263
  • Tsiodras S, Gold HS, Sakoulas G, et al. Linezolid resistance in a clinical isolate of staphylococcus aureus. Lancet. 2001;358(9277):207–208. doi: 10.1016/S0140-6736(01)05410-1
  • Gonzales RD, Schreckenberger PC, Graham MB, et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet. 2001;357(9263):1179. doi: 10.1016/S0140-6736(00)04376-2
  • Mendes RE, Deshpande L, Streit JM, et al. ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother. 2018;73(7):1880–1887. doi: 10.1093/jac/dky099
  • Wolter N, Smith AM, Farrell DJ, et al. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus.Antimicrob agents chemother. Antimicrob Agents Chemother. 2005;49(8):3554–3557. doi: 10.1128/AAC.49.8.3554-3557.2005
  • Yue J, Dong BR, Yang M, et al. Linezolid versus vancomycin for skin and soft tissue infections. Cochrane Database Syst Rev. [2016 Jan 7];2016(1):CD008056. doi: 10.1002/14651858.CD008056.pub3
  • Kato H, Hagihara M, Asai N, et al. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist. 2021;24:98–105. doi: 10.1016/j.jgar.2020.12.009
  • Whang DW, Miller LG, Partain NM, et al. Systematic review and meta-analysis of linezolid and daptomycin for treatment of vancomycin-resistant enterococcal bloodstream infections. Antimicrob Agents Chemother. 2013;57(10):5013–5018. doi: 10.1128/AAC.00714-13
  • Chuang YC, Wang JT, Lin HY, et al. Daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bacteremia: systematic review and meta-analysis. BMC Infect Dis. 2014;14(1):687. doi: 10.1186/s12879-014-0687-9
  • Balli EP, Venetis CA, Miyakis S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob Agents Chemother. 2014;58(2):734–739. doi: 10.1128/AAC.01289-13
  • Zhao M, Liang L, Ji L, et al. Similar efficacy and safety of daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bloodstream infections: a meta-analysis. Int J Antimicrob Agents. 2016;48(3):231–238. doi: 10.1016/j.ijantimicag.2016.06.010
  • Shi C, Jin W, Xie Y, et al. Efficacy and safety of daptomycin versus linezolid treatment in patients with vancomycin-resistant enterococcal bacteraemia: an updated systematic review and meta-analysis. J Glob Antimicrob Resist. 2020;21:235–245. doi: 10.1016/j.jgar.2019.10.008
  • Burdette SD, Trotman R. Tedizolid: the first once-daily oxazolidinone class antibiotic. Clin Infect Dis. 2015;61(8):1315–1321. doi: 10.1093/cid/civ501
  • Salavert Lletí M, García-Bustos V, Morata Ruiz L, et al. Tedizolid: new data and experiences for clinical practice. Rev Esp Quimioter. 2021;34(Suppl1):22–25. doi: 10.37201/req/s01.06.2021
  • Moran GJ, Fang E, Corey GR, et al. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2014;14(8):696–705. doi: 10.1016/S1473-3099(14)70737-6
  • Prokocimer P, De Anda C, Fang E, et al. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA. 2013;309(6):559–569. doi: 10.1001/jama.2013.241
  • Shorr AF, Lodise TP, Corey GR, et al. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2015;59(2):864–871. doi: 10.1128/AAC.03688-14
  • Mensa Vendrell M, Tasias Pitarch M, Salavert Lletí M, et al. Safety and tolerability of more than six days of tedizolid treatment. Antimicrob Agents Chemother. 2020;64(7):e00356–20. doi: 10.1128/AAC.00356-20
  • Benavent E, Morata L, Escrihuela-Vidal F, et al. Long-term use of tedizolid in osteoarticular infections: benefits among oxazolidinone drugs. Antibiotics (Basel). 2021;10(1):53. doi: 10.3390/antibiotics10010053
  • Sm H. Contezolid: first approval. Drugs. 2021;81(13):1587–1591. doi: 10.1007/s40265-021-01576-0
  • Carvalhaes CG, Duncan LR, Wang W, et al. In vitro activity and potency of the novel oxazolidinone contezolid (MRX-I) tested against gram-positive clinical isolates from the United States and Europe. Antimicrob Agents Chemother. 2020;64(11):e01195–20. doi: 10.1128/AAC.01195-20
  • ClinicalTrials.gov. Safety and efficacy study of oxazolidinones to treat uncomplicated skin infections. [cited 2024 Jan 3]. Available from: https://clinicaltrials.gov/study/NCT00646958?intr=Radezolid&rank=2
  • ClinicalTrials.gov. Safety and efficacy study of oxazolidinone to treat pneumonia. [cited 2024 Jan 3]. Available from: https://clinicaltrials.gov/study/NCT00640926?intr=Radezolid&rank=1
  • ClinicalTrials.gov. A phase 2a study, effect of vancomycin with vs without delpazolid (LCB01-0371) in patients with MRSA bacteremia. Available from cited 2024 Jan 3]. Available from: https://clinicaltrials.gov/study/NCT05225558?intr=Delpazolid%20&rank=2
  • Bassetti M, Labate L, Melchio M, et al. Current pharmacotherapy for methicillin-resistant staphylococcus aureus (MRSA) pneumonia. Expert Opin Pharmacother. 2022;23(3):361–375. doi: 10.1080/14656566.2021.2010706
  • Corey GR, Wilcox MH, Talbot GH, et al. CANVAS 1: the first phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(4):iv41–51. doi: 10.1093/jac/dkq254
  • Wilcox MH, Corey GR, Talbot GH, et al. CANVAS 2: the second phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(4):iv53–iv65. doi: 10.1093/jac/dkq255
  • Friedland HD, O’Neal T, Biek D, et al. CANVAS 1 and 2: analysis of clinical response at day 3 in two phase 3 trials of ceftaroline fosamil versus vancomycin plus aztreonam in treatment of acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2012;56(5):2231–2236. doi: 10.1128/AAC.05738-11
  • Tm F Jr, Low DE, Eckburg PB, et al. FOCUS 1: a randomized, double-blinded, multicentre, phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother. 2011;66(3):iii19–32. doi: 10.1093/jac/dkr096
  • Low DE, Tm F Jr, Eckburg PB, et al. FOCUS 2: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother. 2011;66(3):iii33–44. doi: 10.1093/jac/dkr097
  • Tm F Jr, Low DE, Eckburg PB, et al. Integrated analysis of FOCUS 1 and FOCUS 2: randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin Infect Dis. 2010;51(12):1395–1405. doi: 10.1086/657313
  • Dryden M, Kantecki M, Yan JL, et al. Treatment outcomes of secondary bacteraemia in patients treated with ceftaroline fosamil: pooled results from six phase III clinical trials. J Glob Antimicrob Resist. 2022;28:108–114. doi: 10.1016/j.jgar.2021.10.027
  • Awad SS, Rodriguez AH, Chuang YC, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis. 2014;59(1):51–61. doi: 10.1093/cid/ciu219
  • Nicholson SC, Welte T, Tm F Jr, et al. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int J Antimicrob Agents. 2012;39(3):240–246. doi: 10.1016/j.ijantimicag.2011.11.005
  • Overcash JS, Kim C, Keech R, et al. Ceftobiprole compared with vancomycin plus aztreonam in the treatment of acute bacterial skin and skin structure infections: results of a phase 3, randomized, double-blind trial (TARGET). Clin Infect Dis. 2021;73(7):e1507–e1517. doi: 10.1093/cid/ciaa974
  • Lan SH, Lee HZ, Lai CC, et al. Clinical efficacy and safety of ceftobiprole in the treatment of acute bacterial skin and skin structure infection: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Anti Infect Ther. 2022;20(1):95–102. doi: 10.1080/14787210.2021.1927711
  • Holland TL, Cosgrove SE, Doernberg SB, et al. Ceftobiprole for treatment of complicated staphylococcus aureus bacteremia. N Engl J Med. 2023;389(15):1390–1401. doi: 10.1056/NEJMoa2300220
  • Johnson TM, Molina KC, Miller MA, et al. Combination ceftaroline and daptomycin salvage therapy for complicated methicillin-resistant staphylococcus aureus bacteraemia compared with standard of care. Int J Antimicrob Agents. 2021;57(4):106310. doi: 10.1016/j.ijantimicag.2021.106310
  • Sakoulas G, Rose W, Nonejuie P, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant enterococcus faecium. Antimicrob Agents Chemother. 2014;58(3):1494–1500. doi: 10.1128/AAC.02274-13
  • Werth BJ, Barber KE, Tran KN, et al. Ceftobiprole and ampicillin increase daptomycin susceptibility of daptomycin-susceptible and -resistant VRE. J Antimicrob Chemother. 2015;70(2):489–493. doi: 10.1093/jac/dku386
  • Campanile F, Bongiorno D, Mongelli G, et al. Bactericidal activity of ceftobiprole combined with different antibiotics against selected gram-positive isolates. Diagn Microbiol Infect Dis. 2019;93(1):77–81. doi: 10.1016/j.diagmicrobio.2018.07.015
  • Molina KC, Morrisette T, Miller MA, et al. The emerging role of β-lactams in the treatment of methicillin-resistant staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother. 2020;64(7):e00468–20. doi: 10.1128/AAC.00468-20
  • Leone S, Noviello S, Boccia G, et al. Methicillin-resistant staphylococcus aureus infections: role of daptomycin/β-lactams combination. Infez Med. 2015;23(2):99–104.
  • Werth BJ, Steed ME, Kaatz GW, et al. Evaluation of ceftaroline activity against heteroresistant vancomycin-intermediate staphylococcus aureus and vancomycin-intermediate methicillin-resistant S. aureus strains in an in vitro pharmacokinetic/pharmacodynamic model: exploring the “seesaw effect”. Antimicrob Agents Chemother. 2013;57(6):2664–2668. doi: 10.1128/AAC.02308-12
  • Noviello S, Ianniello F, Leone S, et al. In vitro activity of tigecycline: MICs, MBCs, time-kill curves and post-antibiotic effect. J Chemother. 2008;20(5):577–580. doi: 10.1179/joc.2008.20.5.577
  • Leone S, Damiani G, Pezone I, et al. New antimicrobial options for the management of complicated intra-abdominal infections. Eur J Clin Microbiol Infect Dis. 2019;38(5):819–827. doi: 10.1007/s10096-019-03533-y
  • Lee YR, Burton CE. Eravacycline, a newly approved fluorocycline. Eur J Clin Microbiol Infect Dis. 2019;38(10):1787–1794. doi: 10.1007/s10096-019-03590-3
  • Solomkin J, Evans D, Slepavicius A, et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the Investigating Gram-Negative Infections Treated with Eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017;152(3):224–232. doi: 10.1001/jamasurg.2016.4237
  • Solomkin JS, Gardovskis J, Lawrence K, et al. IGNITE4: results of a phase 3, randomized, multicenter, prospective trial of eravacycline vs meropenem in the treatment of complicated intraabdominal infections. Clin Infect Dis. 2019;69(6):921–929. doi: 10.1093/cid/ciy1029
  • Felice VG, Efimova E, Izmailyan S, et al. Efficacy and tolerability of eravacycline in bacteremic patients with complicated intra-abdominal infection: a pooled analysis from the IGNITE1 and IGNITE4 studies. Surg Infect (Larchmt). 2021;22(5):556–561. doi: 10.1089/sur.2020.241
  • Karlowsky JA, Steenbergen J, Zhanel GG. Microbiology and preclinical review of omadacycline. Clin Infect Dis. 2019;69(Suppl 1):S6–S15. doi: 10.1093/cid/ciz395
  • Abrahamian FM, Sakoulas G, Tzanis E, et al. Omadacycline foR acute bacterial skin and skin structure infections. Clin Infect Dis. 2019;69(Suppl 1):S23–S32. doi: 10.1093/cid/ciz396
  • Stets R, Popescu M, Gonong JR, et al. Omadacycline for community-acquired bacterial pneumonia. N Engl J Med. 2019;380(6):517–527. doi: 10.1056/NEJMoa1800201
  • Pullman J, Gardovskis J, Farley B, et al. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: a phase 3, double-blind, randomized study. J Antimicrob Chemother. 2017;72(12):3471–3480. doi: 10.1093/jac/dkx329
  • O’Riordan W, McManus A, Teras J, et al. A comparison of the efficacy and safety of intravenous followed by oral delafloxacin with vancomycin plus aztreonam for the treatment of acute bacterial skin and skin structure infections: a phase 3, multinational, double-blind, randomized study. Clin Infect Dis. 2018;67(5):657–666. doi: 10.1093/cid/ciy165
  • Lan SH, Lai CC, Lu LC, et al. Efficacy and safety of delafloxacin in the treatment of acute bacterial skin and skin structure infections: a systematic review and meta-analysis of randomized controlled trials. Infect Drug Resist. 2019;12:1415–1423. doi: 10.2147/IDR.S202160
  • Horcajada JP, Salata RA, Álvarez-Sala R, et al. A phase 3 study to compare delafloxacin with moxifloxacin for the treatment of adults with community-acquired bacterial pneumonia (DEFINE-CABP). Open Forum Infect Dis. 2019;7(1):ofz514. doi: 10.1093/ofid/ofz514
  • Grabein B, Graninger W, Rodríguez Baño J, et al. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clin Microbiol Infect. 2017;23(6):363–372. doi: 10.1016/j.cmi.2016.12.005
  • Saravolatz LD, Pawlak J. In vitro activity of fosfomycin alone and in combination against Staphylococcus aureus with reduced susceptibility or resistance to methicillin, vancomycin, daptomycin or linezolid. J Antimicrob Chemother. 2022;78(1):238–241. doi: 10.1093/jac/dkac380
  • Pujol M, Miró JM, Shaw E, et al. Daptomycin plus fosfomycin versus daptomycin alone for methicillin-resistant staphylococcus aureus bacteremia and endocarditis: a randomized clinical trial. Clin Infect Dis. 2021;72(9):1517–1525. doi: 10.1093/cid/ciaa1081
  • Tseng TC, Chuang YC, Yang JL, et al. The combination of daptomycin with fosfomycin is more effective than daptomycin alone in reducing mortality of vancomycin-resistant enterococcal bloodstream infections: a retrospective, comparative cohort study. Infect Dis Ther. 2023 Feb;12(2):589–606. doi: 10.1007/s40121-022-00754-1
  • Veve MP, Wagner JL. Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic. Pharmacotherapy. 2018;38(9):935–946. doi: 10.1002/phar.2166
  • File TM, Goldberg L, Das A, et al. Efficacy and safety of intravenous-to-oral lefamulin, a pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia: the phase III lefamulin evaluation against pneumonia (LEAP 1) trial. Clin Infect Dis. 2019;69(11):1856–1867. doi: 10.1093/cid/ciz090
  • Alexander E, Goldberg L, Das AF, et al. Oral lefamulin vs moxifloxacin for early clinical response among adults with community-acquired bacterial pneumonia: the LEAP 2 randomized clinical trial. JAMA. 2019;322(17):1661–1671. doi: 10.1001/jama.2019.15468
  • Tang HJ, Wang JH, Lai CC. Lefamulin vs moxifloxacin for community-acquired bacterial pneumonia. Medicine (Baltimore). 2020;99(29):e21223. doi: 10.1097/MD.0000000000021223
  • [ cited 2024 Jan 3]. cited https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens
  • Bulger EM, May AK, Robinson BRH, et al. A novel immune modulator for patients with Necrotizing Soft Tissue Infections (NSTI): results of a multicenter, phase 3 randomized controlled trial of reltecimod (AB 103). Ann Surg. 2020;272(3):469–478. doi: 10.1097/SLA.0000000000004102
  • Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019;7(6):e00535. doi: 10.1002/prp2.535
  • Motley MP, Banerjee K, Fries BC. Monoclonal antibody-based therapies for bacterial infections. Curr Opin Infect Dis. 2019;32(3):210–216. doi: 10.1097/QCO.0000000000000539
  • Verma V. Leveraging monoclonal antibodies as therapeutics to address antimicrobial resistance in bacteria. J App Biol Biotech. 2023;11(3):53–60. doi: 10.7324/JABB.2023.90087
  • [cited 2024 Apr 25]. https://www.aridispharma.com/ar-301/
  • Burke ZDC, Hart CM, Kelley BV, et al. Monoclonal antibody disrupts biofilm structure and restores antibiotic susceptibility in an orthopedic implant infection model. Antibiotics (Basel). 2023;12(10):1490. doi: 10.3390/antibiotics12101490
  • Iszatt JJ, Larcombe AN, Chan HK, et al. Phage therapy for multi-drug resistant respiratory tract infections. Viruses. 2021;13(9):1809. doi: 10.3390/v13091809
  • Hitchcock NM, Devequi Gomes Nunes D, Shiach J, et al. Current clinical landscape and global potential of bacteriophage therapy. Viruses. 2023;15(4):1020. doi: 10.3390/v15041020
  • Vg F Jr, Das AF, Lipka-Diamond J, et al. Exebacase In addition to standard-of-care antibiotics for staphylococcus aureus bloodstream infections and right-sided infective endocarditis: a phase 3, superiority-design, placebo-controlled, randomized clinical trial (DISRUPT). Clin Infect Dis. 2024:ciae043. doi: 10.1093/cid/ciae043
  • Huang DB, Sader HS, Rhomberg PR, et al. Anti-staphylococcal lysin, LSVT-1701, activity: in vitro susceptibility of staphylococcus aureus and coagulase-negative staphylococci (CoNS) clinical isolates from around the world collected from 2002 to 2019. Diagn Microbiol Infect Dis. 2021;101(3):115471. doi: 10.1016/j.diagmicrobio.2021.115471
  • Luyt CE, Brechot N, Trouillet JL, et al. Antibiotic stewardship in the intensive care unit. Crit Care. 2014;18(5):480. doi: 10.1186/s13054-014-0480-6
  • Sijbom M, Büchner FL, Saadah NH, et al. Determinants of inappropriate antibiotic prescription in primary care in developed countries with general practitioners as gatekeepers: a systematic review and construction of a framework. BMJ Open. 2023;13(5):e065006. doi: 10.1136/bmjopen-2022-065006
  • Al-Tawfiq JA. The pattern and impact of infectious diseases consultation on antimicrobial prescription. J Glob Infect Dis. 2013;5(2):45–48. doi: 10.4103/0974-777X.112266

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.