Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 48, 2019 - Issue 7
217
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and numerical studies on the effect of elongation rate and temperature on the mechanical behaviour of high strength NBR

, &
Pages 281-292 | Received 31 Oct 2018, Accepted 17 Apr 2019, Published online: 07 May 2019

References

  • Jones DF, Treloar LRG. The properties of rubber in pure homogeneous strain. J Phy D Appl Physics. 1975;8(11):1285. doi: 10.1088/0022-3727/8/11/007
  • Ogden RW. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A. The Royal Society; 1972. Vol. 326, p. 565–584.
  • Buckley CP, Turner DM, Dorfmann A, et al. Application of flexible biaxial testing in the development of constitutive models for elastomers. In: Constitutive models for rubber. Rotterdam: AA Balkema; 1999. p. 59–64.
  • Hussein IA, Chaudhry RA, Sharkh BFA. Study of the miscibility and mechanical properties of NBR/HNBR blends. Polym Engin Sci. 2004;44(12):2346–2352. doi: 10.1002/pen.20263
  • Ferry JD. Viscoelastic properties of polymers. 3rd. New York: Wiley; 1980.
  • Gerlach C. Sequential biaxial drawing of polyester film [PhD thesis]. University of Oxford; 1998.
  • Buckley P. Experimental methods for rubberlike solids. In: Mechanics and thermomechanics of rubberlike solids. Springer; 2004. p. 1–62.
  • Brown R. Physical testing of rubber. New York: Springer Science & Business Media; 2006.
  • Khan AS, Baig M, Hamid S, et al. Thermo-mechanical large deformation responses of hydrogenated nitrile butadiene rubber (HNBR): experimental results. Int J Solids Struct. 2010;47(20):2653–2659. doi: 10.1016/j.ijsolstr.2010.05.012
  • Ilseng A, Skallerud BH, Clausen AH. Tension behaviour of HNBR and FKM elastomers for a wide range of temperatures. Polym Test. 2016;49:128–136. doi: 10.1016/j.polymertesting.2015.11.017
  • Akulichev AG, Alcock B, Echtermeyer AT. Elastic recovery after compression in HNBR at low and moderate temperatures: Experiment and modelling. Polym Test. 2017;61(Suppl. C):46–56. doi: 10.1016/j.polymertesting.2017.05.003
  • Ben A, Kjell O, Jon H, et al. The low temperature crystallization of hydrogenated nitrile butadiene rubber (HNBR). Polym Test. 2018;66:228–234. doi: 10.1016/j.polymertesting.2017.12.027
  • Mahmoud WE, Mansour SA, Hafez MA, et al. On the degradation and stability of high abrasion furnace black (HAF)/acrylonitrile butadiene rubber (NBR) and high abrasion furnace black (HAF)/graphite/acrylonitrile butadiene rubber (NBR) under cyclic stress-strain. Polym Degrad Stab. 2007;92(11):2011–2015. doi: 10.1016/j.polymdegradstab.2007.08.005
  • Nillawong M, Sombatsompop N, Sirisinha C. Viscoelastic properties of nitrile rubber filled with lignite fly ash. J Appl Polym Sci. 2010;116(6):3497–3502.
  • Hassan MA, Abouel-Kasem A, El-Sharief MA, et al. Evaluation of the material constants of nitrile butadiene rubbers (NBRs) with different carbon black loading (CB): FE-simulation and experimental. Polym (United Kingdom). 2012;53(17):3807–3814.
  • Ilseng A, Skallerud BH, Clausen AH. An experimental and numerical study on the volume change of particle-filled elastomers in various loading modes. Mech Mater. 2017;106:44–57. doi: 10.1016/j.mechmat.2017.01.007
  • Bergström JS, Boyce MC. Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids. 1998;46(5):931–954. doi: 10.1016/S0022-5096(97)00075-6
  • Bardenhagen SG, Stout MG, Gray GT. Three dimensional finite deformation viscoplastic constitutive models for polymeric materials. Mech Mater. 1997;25:235–253. doi: 10.1016/S0167-6636(97)00007-0
  • Khan AS, Zhang H. Finite deformation of a polymer: experiments and modeling. Inter J Plasticity. 2001;17(9):1167–1188. doi: 10.1016/S0749-6419(00)00073-5
  • Khan AS, Lopez-pamies O, Kazmi R. Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Inter J Plasticity. 2006;22(4):581–601. doi: 10.1016/j.ijplas.2005.08.001
  • Khan AS, Farrokh B. Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, experimental results over wide ranges of temperatures and strain rates. Inter J Plasticity. 2006;22(8):1506–1529. Special issue in honour of Dr. Kirk Valanis. doi: 10.1016/j.ijplas.2005.10.001
  • Niemczura J, Ravi-Chandar K. On the response of rubbers at high strain rates-III. effect of hysteresis. J Mech Phys Solids. 2011;59(2):457–472. doi: 10.1016/j.jmps.2010.09.009
  • Song B, Chen W, Cheng M. Novel model for uniaxial strain-rate dependent stress-strain behavior of ethylene-propylene-diene monomer rubber in compression or tension. J Appl Polym Sci. 2004;92(3):1553–1558. doi: 10.1002/app.20095
  • Ramezani M, Ripin ZM. Combined experimental and numerical analysis of bulge test at high strain rates using split Hopkinson pressure bar apparatus. J Mater Proc Tech. 2010;210(8):1061–1069. doi: 10.1016/j.jmatprotec.2010.02.016
  • Pouriayevali H, Guo YB, Shim VPW. A visco-hyperelastic constitutive description of elastomer behaviour at high strain rates. Procedia Eng. 2011;10(Suppl. C):2274–2279. 11th International Conference on the Mechanical Behavior of Materials (ICM11). doi: 10.1016/j.proeng.2011.04.376
  • Nakai K, Yokoyama T. High strain-rate compressive properties and constitutive modeling of selected polymers. J Solid Mech Mater Engin. 2012;6(6):731–741. doi: 10.1299/jmmp.6.731
  • Cao K, Wang Y, Wang Y. Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates. Int J Solids Struct. 2014;51(13):2539–2548. doi: 10.1016/j.ijsolstr.2014.03.026
  • Khajehsaeid H, Arghavani J, Naghdabadi R, et al. A visco-hyperelastic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme. Int J Eng Sci. 2014;79(Suppl. C):44–58. doi: 10.1016/j.ijengsci.2014.03.001
  • Li K, Zhao H, Liu W, et al. Material properties and constitutive modeling of infant porcine cerebellum tissue in tension at high strain rate. PLoS ONE. 2015;10(4):1–12.
  • Guo L, Lv Y, Deng Z, et al. Tension testing of silicone rubber at high strain rates. Polym Test. 2016;50(Suppl. C):270–275. doi: 10.1016/j.polymertesting.2016.01.021
  • Ali A, Hosseini M, Sahari BB. A review of constitutive models for rubber-like materials. Amer J Engin Appl Sci. 2010;3(1):232–239. doi: 10.3844/ajeassp.2010.232.239
  • Steinmann P, Hossain M, Possart G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for treloars data. Arch Appl Mech. 2012;82(9):1183–1217. doi: 10.1007/s00419-012-0610-z
  • Marković G, Marinović-Cincović M, Radovanović B, et al. Rheological and mechanical properties of wood flour filled polyisoprene/chlorosulphonated polyethylene rubber blends. Chem Ind Chem Engin Quarterly/CICEQ. 2007;13(4):186–191. doi: 10.2298/CICEQ0704186M
  • Yuniari A, Mayasari H, Setyorini I. Curing characteristics, swelling, and mechanical properties of natural rubber/nitrile butadiene rubber blends with and without compatibilizer. Majalah Kulit Karet dan Plastik. 2017;33(2):65–72. doi: 10.20543/mkkp.v33i2.3265
  • Ismail H, Poh BT. Curing characteristics of nitrile and natural rubber blends. Polym Plast Technol Eng. 2001;40(4):451–462. doi: 10.1081/PPT-100002069
  • Husnan MA, Ismail H, Shuib RK. The effect of carbon black (CB) loading on curing characteristics and mechanical properties of virgin acrylonitrile butadiene rubber (NBRv)/recycled acrylonitrile butadiene rubber (NBRr) blends. IOP Conference Series: Materials Science and Engineering, IOP Publishing; Vol. 309, 2018. p. 012028.
  • Chakraborty S, Bandyopadhyay S, Ameta R, et al. Application of {FTIR} in characterization of acrylonitrile-butadiene rubber (nitrile rubber). Polym Test. 2007;26(1):38–41. doi: 10.1016/j.polymertesting.2006.08.004
  • El-Nemr KF. Effect of different curing systems on the mechanical and physico-chemical properties of acrylonitrile butadiene rubber vulcanizates. Mater Des. 2011;32(6):3361–3369. doi: 10.1016/j.matdes.2011.02.010
  • Roland CM. Mechanical behavior of rubber at high strain rates. Rubber Chem Tech. 2006;79(3):429–459. doi: 10.5254/1.3547945
  • Hoo Fatt MS, Ouyang X. Integral-based constitutive equation for rubber at high strain rates. Int J Solids Struct. 2007;44(20):6491–6506. doi: 10.1016/j.ijsolstr.2007.02.038
  • Bernstein B, Kearsley EA, Zapas LJ. A study of stress relaxation with finite strain. Trans Soc Rheology. 1963;7(1):391–410. doi: 10.1122/1.548963
  • Bernstein B, Kearsley EA, Zapas LJ. A study of stress relaxation with finite strain. Rubber Chem Tech. 1965;38(1):76–89. doi: 10.5254/1.3535640
  • Truesdell C, Noll W. The non-linear field theories of mechanics/die nicht-linearen feldtheorien der mechanik. Handbuch der Physik. 1965; 2.
  • Lockett Fl J. Nonlinear viscoelastic solids. New York: Academic Press; 1972.
  • Drozdov AD. A constitutive model in finite viscoelasticity. Rheol Acta. 1995;34(6):562–577. doi: 10.1007/BF00712316
  • Carreau PJ, De Kee DCR, Chhabra RP. Rheology of polymeric systems: principles and applications. Cincinnati: Hanser/Gardner Publications; 1997.
  • Wineman A. Nonlinear viscoelastic solids-A review. Math Mech Solids. 2009;14(3):300–366. doi: 10.1177/1081286509103660
  • Tanner RI. From A to (BK) Z in constitutive relations. J Rheol. 1988;32(7):673–702. doi: 10.1122/1.549986
  • Hossain M, Vu DK, Steinmann P. Experimental study and numerical modelling of VHB 4910 polymer. Comput Mater Sci. 2012;59(Suppl. C):65–74. doi: 10.1016/j.commatsci.2012.02.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.