Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 48, 2019 - Issue 7
189
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Evaluating unidirectional composite thermal conductivities through engineered interphase

&
Pages 317-326 | Received 21 Sep 2018, Accepted 17 May 2019, Published online: 29 May 2019

References

  • Li Y, Stier B, Bednarcyk B, et al. The effect of fiber misalignment on the homogenized properties of unidirectional fiber reinforced composites. Mech Mater. 2016;92:261–274. doi: 10.1016/j.mechmat.2015.10.002
  • Wang S, Qiu J. Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos Part B: Eng. 2010;41(7):533–536. doi: 10.1016/j.compositesb.2010.07.002
  • Wang S, Zhang J, Zhou Z, et al. Compressive and flexural behavior of carbon fiber-reinforced PPS composites at elevated temperature. Mech Adv Mater Struct. 2018: 1–9.
  • Ho KKC, Shamsuddin SR, Riaz S, et al. Wet impregnation as route to unidirectional carbon fibre reinforced thermoplastic composites manufacturing. Plast, Rubber Compos. 2011;40(2):100–107. doi: 10.1179/174328911X12988622801098
  • Liu F, Shi Z, Dong Y. Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent. Compos Part A Appl Sci Manuf. 2018;112:337–345. doi: 10.1016/j.compositesa.2018.06.026
  • Wang ZL, Li YC, Zhang T, et al. A study on mechanical properties of carbon/phenolic composites. Mech Mater. 2008;40(4-5):418–426. doi: 10.1016/j.mechmat.2007.10.004
  • Turan K, Gur M, Kaman MO. Progressive failure analysis of pin-loaded unidirectional carbon-epoxy laminated composites. Mech Adv Mater Struct. 2014;21(2):98–106. doi: 10.1080/15376494.2012.677109
  • Nie WZ, Li J. Effect of carbon fibre content on friction and wear properties of carbon fibre reinforced PA6 composites. Plast Rubber Compos. 2010;39(1):10–15. doi: 10.1179/174328910X12608851832056
  • Tsai JL, Chi YK. Effect of fiber array on damping behaviors of fiber composites. Compos Part B Eng. 2008;39(7-8):1196–1204. doi: 10.1016/j.compositesb.2008.03.003
  • Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A. Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos Part A: Appl Sci Manuf. 2017;96:110–121. doi: 10.1016/j.compositesa.2017.02.015
  • Panda SP, Panda S. Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int J Mech Mater Des. 2015;11(1):41–57. doi: 10.1007/s10999-014-9256-z
  • Kundalwal SI, Meguid SA. Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur J Mech-A/Solids. 2015;53:241–253. doi: 10.1016/j.euromechsol.2015.05.008
  • Bayat M, Aghdam MM. A micromechanics-based analysis of effects of square and hexagonal fiber arrays in fibrous composites using DQEM. Eur J Mech-A/Solids. 2012;32:32–40. doi: 10.1016/j.euromechsol.2011.09.008
  • Wacker G, Bledzki AK, Chate A. Effect of interphase on the transverse Young’s modulus of glass/epoxy composites. Compos Part A Appl Sci Manuf. 1998;29(5-6):619–626. doi: 10.1016/S1359-835X(97)00116-4
  • Young TJ, Crocker LE, Broughton WR, et al. Observations on interphase characterisation in polymer composites by nano-scale indentation using AFM and FEA. Compos Part A Appl Sci Manuf. 2013;50:39–43. doi: 10.1016/j.compositesa.2013.03.014
  • Kari S, Berger H, Gabbert U, et al. Evaluation of influence of interphase material parameters on effective material properties of three phase composites. Compos Sci Technol. 2008;68(3-4):684–691. doi: 10.1016/j.compscitech.2007.09.009
  • Zhu H, Achenbach JD. Effect of fiber-matrix interphase defects on microlevel stress states at neighboring fibers. J Compos Mater. 1991;25(3):224–238. doi: 10.1177/002199839102500301
  • Jasiuk I, Kouider MW. The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites. Mech Mater. 1993;15(1):53–63. doi: 10.1016/0167-6636(93)90078-6
  • Lagache M, Agbossou A, Pastor J, et al. Role of interphase on the elastic behavior of composite materials: theoretical and experimental analysis. J Compos Mater. 1994;28(12):1140–1157. doi: 10.1177/002199839402801205
  • Pagano NJ, Tandon GP. Thermo-elastic model for multidirectional coated-fiber composites: traction formulation. Compos Sci Technol. 1990;38(3):247–269. doi: 10.1016/0266-3538(90)90061-9
  • Dasgupta A, Bhandarkar SM. A generalized self-consistent Mori-Tanaka scheme for fiber-composites with multiple interphases. Mech Mater. 1992;14(1):67–82. doi: 10.1016/0167-6636(92)90019-A
  • Liu YJ, Xu N, Luo JF. Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J Appl Mech. 2000;67(1):41–49. doi: 10.1115/1.321150
  • Guinovart-Díaz R, Rodriguez-Ramos R, Bravo-Castillero J, et al. Closed-form thermoelastic moduli of a periodic three-phase fiber-reinforced composite. J Therm Stresses. 2005;28(10):1067–1093. doi: 10.1080/014957390967730
  • Malakooti MH, Sodano HA. Multi-inclusion modeling of multiphase piezoelectric composites. Compos Part B: Eng. 2013;47:181–189. doi: 10.1016/j.compositesb.2012.10.034
  • Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R. Interphase effects on the thermo-mechanical properties of three-phase composites. Proc Inst Mech Eng Part C J Mech Eng Sci. 2016;230(19):3361–3371. doi: 10.1177/0954406215612830
  • Bednarcyk BA, Aboudi J, Arnold SM. Enhanced composite damping through engineered interfaces. Int J Solids Struct. 2016;92-93:91–104. doi: 10.1016/j.ijsolstr.2016.04.020
  • Haghgoo M, Hassanzadeh-Aghdam MK, Ansari R. Effect of piezoelectric interphase on the effective magneto-electro-elastic properties of three-phase smart composites: A micromechanical study. Mech Adv Mater Struct. 2018: 1–16. doi: 10.1080/15376494.2018.1455932
  • Han S, Lin JT, Yamada Y, et al. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer–matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon N Y. 2008;46(7):1060–1071. doi: 10.1016/j.carbon.2008.03.023
  • Han S, Chung DDL. Increasing the through-thickness thermal conductivity of carbon fiber polymer–matrix composite by curing pressure increase and filler incorporation. Compos Sci Technol. 2011;71(16):1944–1952. doi: 10.1016/j.compscitech.2011.09.011
  • Chen S, Feng Y, Qin M, et al. Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon N Y. 2017;116:84–93. doi: 10.1016/j.carbon.2017.01.103
  • Dong K, Liu K, Zhang Q, et al. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites. Int J Heat Mass Transf. 2016;102:501–517. doi: 10.1016/j.ijheatmasstransfer.2016.06.035
  • Yu GC, Wu LZ, Feng LJ. Enhancing the thermal conductivity of carbon fiber reinforced polymer composite laminates by coating highly oriented graphite films. Mater Des. 2015;88:1063–1070. doi: 10.1016/j.matdes.2015.09.096
  • Al-Sulaiman FA, Al-Nassar YN, Mokheimer EM. Prediction of the thermal conductivity of the constituents of fiber-reinforced composite laminates: voids effect. J Compos Mater. 2006;40(9):797–814. doi: 10.1177/0021998305055548
  • Pilling MW, Yates B, Black MA, et al. The thermal conductivity of carbon fibre-reinforced composites. J Mater Sci. 1979;14(6):1326–1338. doi: 10.1007/BF00549304
  • McIvor SD, Darby MI, Wostenholm GH, et al. Thermal conductivity measurements of some glass fibre-and carbon fibre-reinforced plastics. J Mater Sci. 1990;25(7):3127–3132. doi: 10.1007/BF00587661
  • Sweeting RD, Liu XL. Measurement of thermal conductivity for fibre-reinforced composites. Compos Part A: Appl Sci Manuf. 2004;35(7-8):933–938. doi: 10.1016/j.compositesa.2004.01.008
  • Wang M, Kang Q, Pan N. Thermal conductivity enhancement of carbon fiber composites. Appl Therm Eng. 2009;29(2-3):418–421. doi: 10.1016/j.applthermaleng.2008.03.004
  • Yan D, Wen J, Xu G. A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC. Appl Therm Eng. 2016;94:827–835. doi: 10.1016/j.applthermaleng.2015.09.098
  • Ning Z, Liu R, Elhajjar RF, et al. Micro-modeling of thermal properties in carbon fibers reinforced polymer composites with fiber breaks or delamination. Compos Part B Eng. 2017;114:247–255. doi: 10.1016/j.compositesb.2017.01.036
  • Hiremath CP, Senthilnathan K, Naik NK, et al. Microstructural damage based modeling of thermal conductivity of cyclically loaded CFRP. Compos Sci Technol. 2018;154:37–44. doi: 10.1016/j.compscitech.2017.11.011
  • Aghdam MM, Smith DJ, Pavier MJ. Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites. J Mech Phys Solids. 2000;48(3):499–528. doi: 10.1016/S0022-5096(99)00041-1
  • Aghdam MM, Dezhsetan A. Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos Struct. 2005;71(3-4):327–332. doi: 10.1016/j.compstruct.2005.09.018
  • Mahmoodi MJ, Aghdam MM, Shakeri M. The effects of interfacial debonding on the elastoplastic response of unidirectional silicon carbide-titanium composites. Proc Inst Mech Eng Part C J Mech Eng Sci. 2010;224(2):259–269. doi: 10.1243/09544062JMES1681
  • Sayyidmousavi A, Bougherara H, Falahatgar SR, et al. Thermomechanical viscoelastic response of a unidirectional graphite/polyimide composite at elevated temperatures using a micromechanical approach. J Compos Mater. 2015;49(5):519–534. doi: 10.1177/0021998314521255
  • Mahmoodi MJ, Maleki M, Hassanzadeh-Aghdam MK. Static Bending and free Vibration analysis of Hybrid Fuzzy fiber reinforced Nanocomposie Beam-A Multiscale Modeling. Int J Appl Mech. 2018;10(5):1–36. doi: 10.1142/S1758825118500539
  • Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R. Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes. Mech Mater. 2018;118:31–43. doi: 10.1016/j.mechmat.2017.12.003
  • Hassanzadeh-Aghdam MK, Ansari R, Mahmoodi MJ. Micromechanical estimation of biaxial thermomechanical responses of hybrid fiber-reinforced metal matrix nanocomposites containing carbon nanotubes. Mech Mater. 2018;119:1–15. doi: 10.1016/j.mechmat.2018.01.002
  • Dhala S, Ray MC. Micromechanics of piezoelectric fuzzy fiber-reinforced composite. Mech Mater. 2015;81:1–17. doi: 10.1016/j.mechmat.2014.10.004
  • Hassanzadeh-Aghdam MK, Edalatpanah SA, Azaripour S. Interphase region effect on the biaxial yielding envelope of SiC fiber-reinforced Ti matrix composites. Proc Inst Mech Eng Part C J Mech Eng Sci. 2018;233:2044–2055. 0954406218777532. doi: 10.1177/0954406218777532
  • Kundalwal SI, Ray MC. Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos Part B Eng. 2014;57:199–209. doi: 10.1016/j.compositesb.2013.10.003
  • Aboudi J. Closed form constitutive equations for metal matrix composites. Int J Eng Sci. 1987;25(9):1229–1240. doi: 10.1016/0020-7225(87)90085-1
  • Farmer JD, Covert EE. Thermal conductivity of a thermosetting advanced composite during its cure. J Thermophys Heat Transfer. 1996;10(3):467–475. doi: 10.2514/3.812

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.