Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 50, 2021 - Issue 2
283
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

X-band radar-absorbing structures based on MWCNTs/NiZn ferrite nanocomposites

, , &
Pages 71-82 | Received 18 Mar 2020, Accepted 08 Oct 2020, Published online: 27 Oct 2020

References

  • Verma P, Saini P, Malik RS, et al. Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon N Y. 2015;89:308–317. doi:10.1016/j.carbon.2015.03.063.
  • Lee TW, Lee SE, Jeong YG. Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interfaces. May 2016;8(20):13123–13132. doi:10.1021/acsami.6b02218.
  • Micheli D, Marchetti M. Mitigation of human exposure to electromagnetic fields using carbon foam and carbon nanotubes. Engineering. 2012;04(12):928–943. doi:10.4236/eng.2012.412a118.
  • Yin P, Deng Y, Zhang L, et al. One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band. Ceram Int. 2018;44(17):20896–20905. doi:10.1016/j.ceramint.2018.08.096.
  • Choi I, Kim JG, Seo IS, et al. Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite. Compos Struct. 2012;94(9):3002–3008. doi:10.1016/j.compstruct.2012.04.009.
  • Shah A, Ding A, Wang Y, et al. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites. Carbon N Y. 2016;96:987–997. doi:10.1016/j.carbon.2015.10.047.
  • Choi I, Lee D, Lee DG. Hybrid composite low-observable radome composed of E-glass/aramid/epoxy composite sandwich construction and frequency selective surface. Compos Struct. 2014;117(1):98–104. doi:10.1016/j.compstruct.2014.06.031.
  • Choi WH, Kim CG. Broadband microwave-absorbing honeycomb structure with novel design concept. Compos Part B Eng. 2015;83:14–20. doi:10.1016/j.compositesb.2015.08.027.
  • Naidu MK, Ramji K, Santhosi BVSRN, et al. Influence of NiFe Alloy nanopowder on electromagnetic and microwave absorption properties of MWCNT/epoxy composite. Adv Polym Technol. 2018;37(2):622–628. doi:10.1002/adv.21703.
  • Nwigboji IH, Ejembi JI, Wang Z, et al. Microwave absorption properties of multi-walled carbon nanotube (outer diameter 20-30 nm)-epoxy composites from 1 to 26.5 GHz. Diam Relat Mater. 2015;52:66–71. doi:10.1016/j.diamond.2014.12.008.
  • Manmohan CT, Nair RU, Singh H. Radar absorbing structures using carbon nano-composites: Em design and performance analysis). Asia-Pacific Microwave Conference of Proceedings, APMC. 2017, p. 2–5, https://doi.org/10.1109/APMC.2016.7931404
  • Savi P, Miscuglio M, Giorcelli M, et al. Analysis of microwave absorbing properties of epoxy MWCNT composites. Prog Electromagn Res Lett. 2014;44(October 2013):63–69. doi:10.2528/PIERL13102803.
  • Das CK, Bhattacharya P, Kalra SS. Graphene and MWCNT: potential candidate for microwave absorbing materials. J Mater Sci Res. 2012;1(2):126–132. doi:10.5539/jmsr.v1n2p126.
  • Wang Z, Yang W, Lv Q, et al. Ferromagnetic and excellent microwave absorbing properties of CoNi microspheres and heterogeneous Co/Ni nanocrystallines. RSC Adv. 2019;9(24):13365–13371. doi:10.1039/c9ra02013f.
  • Khan K, Rehman S. Microwave absorbance properties of zirconium-manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers. Mater Res Bull. 2014;50:454–461. doi:10.1016/j.materresbull.2013.11.018.
  • Dosoudil R, Usakova M, Gruskova A, et al. Influence of the synthesis method of filler on permeability and microwave absorption properties of ferrite/polymer composites. IEEE Trans Magn. 2014;50(4):18–21. doi:10.1109/TMAG.2013.2286452.
  • Haritha T, Ramji K, Murthy KK, et al. Synthesis and microwave absorption properties of MnZn ferrite nanocomposite. Lect Notes Mech Eng. 2020: 419–429. doi:10.1007/978-981-15-1124-0_36.
  • Zhang J, Wang P, Chen Y, et al. Microwave absorption properties of Co@C nanofiber composite for normal and oblique incidence. J Electron Mater. 2018;47(8):4703–4709. doi:10.1007/s11664-018-6351-1.
  • Peymanfar R, Javanshir S, Naimi-Jamal MR, et al. Preparation and characterization of MWCNT/Zn 0.25 Co 0.75 Fe 2 O 4 nanocomposite and investigation of its microwave absorption properties at X-band frequency using silicone rubber polymeric matrix. J Electron Mater. 2019; doi:10.1007/s11664-019-07065-1.
  • Kuang D, Hou L, Wang S, et al. Facile synthesis of Fe/Fe3C-C core-shell nanoparticles as a high-efficiency microwave absorber. Appl Surf Sci. 2019;493:1083–1089. doi:10.1016/j.apsusc.2019.07.073.
  • Kuang D, Hou L, Wang S, et al. Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon N Y. 2019;153:52–61. doi:10.1016/j.carbon.2019.06.105.
  • Yu LJ, Ahmad SH, Kong I, et al. Preparation and characterisation of NiZn ferrite/multiwalled nanotubes thermoplastic natural rubber composite. Int J Mater Eng Innovation. 2013;4:214–224.
  • Shu R, Wu Y, Li Z, et al. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos Sci Technol. 2019;184:107839, doi:10.1016/j.compscitech.2019.107839.
  • Shu R, Wu Y, Zhang J, et al. Facile synthesis of nitrogen-doped cobalt / cobalt oxide / carbon / reduced graphene oxide nanocomposites for electromagnetic wave absorption. Compos Part B. 2020;193:108027, doi:10.1016/j.compositesb.2020.108027.
  • Shu R, Wu Y, Li W, et al. Fabrication of ferroferric oxide – carbon / reduced graphene oxide nanocomposites derived from Fe-based metal – organic frameworks for microwave absorption. Compos Sci Technol. 2020;196(September 2019):108240, doi:10.1016/j.compscitech.2020.108240.
  • Shu R, Wan Z, Zhang J, et al. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl Mater Interfaces. 2020;12(4):4689–4698. doi:10.1021/acsami.9b16134.
  • Shu R, Zhang J, Guo C, et al. Facile synthesis of nitrogen-doped reduced graphene oxide / nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem Eng J. 2019;384:123266, doi:10.1016/j.cej.2019.123266.
  • Shu R, Li W, Wu Y, et al. Nitrogen-doped Co-C / MWCNTs nanocomposites derived from bimetallic metal – organic frameworks for electromagnetic wave absorption in the X-band. Chem Eng J. 2019;362:513–524. doi:10.1016/j.cej.2019.01.090.
  • Zhang G, Wang X, Gao X, et al. Fabrication of 3D net-like MWCNTs/ZnFe 2 O 4 hybrid composites as high-performance electromagnetic wave absorbers. Chem Eng J; 2018;337:242–255. doi:10.1016/j.cej.2017.12.106.
  • Nagasree PS, Ramji K, Murthy KK, et al. Fibre reinforced polymer (FRP) nanocomposites for radar absorption application in the X-band. Lect Notes Mech Eng. 2020: 409–418. doi:10.1007/978-981-15-1124-0_35.
  • Luo H, Chen F, Wang X, et al. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos Part A Appl Sci Manuf. 2019;119:1–7. doi:10.1016/j.compositesa.2019.01.015.
  • Santhosi BVSRN, Ramji K, Rao NBRM. Optimization of double layered graphene-based microwave absorber in X-band using Pareto genetic algorithm. Mater Res Express. Aug. 2019;6(10): doi:10.1088/2053-1591/ab398f.
  • Siva Nagasree P, Ramji K, Haritha T, et al. Polymer based MWCNT/nickel zinc ferritenanocomposites for RAS application with simulation. Mater Today Proc. 2019;18:406–412. doi:10.1016/j.matpr.2019.06.318.
  • Tammareddy H, Ramji K, NagaSree PS, et al. Complex permittivity, permeability and microwave absorbing properties of PANI coated MWCNTs/ Manganese zinc ferrite nanocomposite. Mater Today Proc. 2019;18:420–425. doi:10.1016/j.matpr.2019.06.320.
  • Song TH, Choi WH, Shin JH, et al. Flexible design of dual-band radar-absorbing composites by controllable permittivity. Int J Aeronaut Sp Sci. 2019;20(2):368–371. doi:10.1007/s42405-019-00143-y.
  • Kim JB. Broadband radar absorbing structures of carbon nanocomposites. Adv Compos Mater. 2012;21(4):333–344. doi:10.1080/09243046.2012.736350.
  • Engineering M, Nagasree PS, Ramji K, et al. Epoxy nanocomposites for radar-absorbing structures. Plast Rubber Compos. 2020;0(0):1–9. doi:10.1080/14658011.2020.1793080.
  • Crespo M, González M, Pozuelo J. Magnetic silica: epoxy composites with a nano- and micro-scale control. Mater Chem Phys. 2014;144(3):335–342. doi:10.1016/j.matchemphys.2013.12.049.
  • Doyle CD. Estimating thermal stability of experimental polymers by emprical thermogravimetric analysis. Anal Chem. 1961;33(1):77–79. doi:10.1021/ac60169a022.
  • Lee SE, Cho S, Lee YS. Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding. Carbon Lett. 2014;15(1):32–37. doi:10.5714/CL.2014.15.1.032.
  • Guan PF, Zhang XF, Guo JJ. Assembled Fe3O4 nanoparticles on graphene for enhanced electromagnetic wave losses. Appl Phys Lett. Oct. 2012;101(15), doi:10.1063/1.4758931.
  • Santhosi BVSRN, Ramji K, Rao NBRM, et al. Comparative study of polymer-based nanocomposites microwave absorption performance in X-band. Mater Res Express. 2019;7(1), doi:10.1088/2053-1591/ab621e.
  • Singh S, Sinha A, Zunke RH, et al. Double layer microwave absorber based on Cu dispersed SiC composites. Adv Powder Technol. 2018;29(9):2019–2026. doi:10.1016/j.apt.2018.05.008.
  • Dat TQ, Ha NT, Hung DQ. Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-Polyaniline nanocomposite: preparation, characterization and microwave absorption properties. J Electron Mater. 2017;46(6):3707–3713. doi:10.1007/s11664-017-5386-z.
  • Liu P, Yao Z, Zhou J. Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites covered with reduced graphene oxide. RSC Adv. Oct. 2015;5(114):93739–93748. doi:10.1039/c5ra18668d.
  • Wang S, Xu Y, Fu R, et al. Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 2019;11(1), doi:10.1007/s40820-019-0307-8.
  • Naidu MK, Ramji K, Santhosi BVSRN, et al. Enhanced microwave absorption of quartic layered epoxy-mwcnt composite for radar applications. Adv Compos Lett. 2017;26(4):133–141. doi:10.1177/096369351702600405.
  • Song WL, Guan XT, Fan LZ, et al. Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon N Y. 2016;100:109–117. doi:10.1016/j.carbon.2016.01.002.
  • Sarkar D, Bhattacharya A, Nandy P, et al. Enhanced broadband microwave reflection loss of carbon nanotube ensheathed Ni-Zn-Co-ferrite magnetic nanoparticles. Mater Lett. 2014;120:259–262. doi:10.1016/j.matlet.2014.01.089.
  • Shi K, Li J, He S, et al. A superior microwave absorption material: Ni2+-Zr4+ Co-doped barium ferrite ceramics with large reflection loss and broad bandwidth. Curr Appl Phys. 2019;19(7):842–848. doi:10.1016/j.cap.2019.03.018.
  • Devendra K, Rangaswamy T. Strength characterization of E-glass fiber reinforced epoxy composites with filler materials. J Miner Mater Charact Eng. 2013;01(06):353–357. doi:10.4236/jmmce.2013.16054.
  • Shah A, Wang Y, Huang H, et al. Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates. Compos Struct. 2015;131:1132–1141.
  • Vinayasree S, Soloman MA, Sunny V, et al. A microwave absorber based on strontium ferrite-carbon black-nitrile rubber for S and X-band applications. Compos Sci Technol. 2013;82:69–75. doi:10.1016/j.compscitech.2013.04.010.
  • Yang RB, Liang WF, Chang CC, et al. Complex dielectric permittivity and magnetic permeability of Fe/Fe 3O4 composite particles in 2-18 GHz. Ferroelectrics. 2012;434(1):77–82. doi:10.1080/00150193.2012.732488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.