Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 50, 2021 - Issue 2
221
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Functionalisation of multiwalled carbon nanotubes with melamine phosphate and their influence on morphology, thermal stability, flame retardancy and mechanical properties of ABS

, , , , , & show all

References

  • Prieur B, Meub M, Wittemann M, et al. Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Polym Degrad Stab. 2016;127:32–43.
  • Huang G, Han D, Jin Y, et al. Fabrication of nitrogen-doped graphene decorated with organophosphor and lanthanum toward high-performance ABS nanocomposites. ACS Appl Nano Mater. 2018;1:3204–3213.
  • Zhan F, Zhang H, Cao R, et al. Release and transformation of BTBPE during the thermal treatment of flame retardant ABS plastics. Environ Sci Technol. 2019;53:185–193.
  • Cao X, Yang Y, Luo H, et al. High efficiency intumescent flame retardancy between Hexakis (4-nitrophenoxy) cyclotriphosphazene and ammonium polyphosphate on ABS. Polym Degrad Stab. 2017;143:259–265.
  • Ma H, Tong L, Xu Z, et al. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites. Appl Clay Sci. 2008;42:238–245.
  • Chen X, Cai X. Synthesis of poly(diethylenetriamine terephthalamide) and its application as a flame retardant for ABS. J Therm Anal Calorim. 2016;125:313–320.
  • Jian R-K, Chen L, Zhao B, et al. Acrylonitrile–butadiene–styrene terpolymer with metal hypophosphites: flame retardance and mechanism research. Ind Eng Chem Res. 2014;53:2299–2307.
  • Shin YJ, Ham YR, Kim SH, et al. Application of cyclophosphazene derivatives as flame retardants for ABS. J Ind Eng Chem. 2010;16:364–367.
  • Xia Y, Tang R, Tao S, et al. Epoxy resin/phosphorus-based microcapsules: their synergistic effect on flame retardation properties of high-density polyethylene/graphene nanoplatelets composites. J Appl Polym Sci. 2018;135:46662.
  • Nie WZ, Li J, Zhang YF. Tensile properties of surface treated carbon fibre reinforced ABS/PA6 composites. Plast Rubber Compos. 2010;39:16–20.
  • Li C, Kang N-J, Labrandero SD, et al. Synergistic effect of carbon nanotube and polyethersulfone on flame retardancy of carbon fiber reinforced epoxy composites. Ind Eng Chem Res. 2014;53:1040–1047.
  • Wang L, Sun Q. Study on the flame retardancy of high impact polystyrene composites filled with organic-modified carbon nanotubes. Plast Rubber Compos. 2020;49:1–9.
  • Feng Y, Li X, Zhao X, et al. Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating “branch-like” flame-retardant functionalized graphene. ACS Appl Mater Interfaces. 2018;10:21628–21641.
  • Li X, Wang Z, Wu L, et al. One-step in situ synthesis of a novel α-zirconium phosphate/graphene oxide hybrid and its application in phenolic foam with enhanced mechanical strength, flame retardancy and thermal stability. RSC Adv. 2016;6:74903–74912.
  • Long J, Liang B, Wang Z. Enhanced mechanical properties of APP flame-retardant epoxy resin by phosphorus-modified graphene oxide. Plast Rubber Compos. 2020;49:91–100.
  • Higginbotham AL, Lomeda JR, Morgan AB, et al. Graphite oxide flame-retardant polymer nanocomposites. ACS Appl Mater Interfaces. 2009;1:2256–2261.
  • He XJ, Wang LJ, Xie XL, et al. Investigation of thermal property and flame retardancy of ABS/montmorillonite nanocomposites. Plast Rubber Compos. 2010;39:54–60.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
  • Laoutid F, Bonnaud L, Alexandre M, et al. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R. 2009;63:100–125.
  • Yu T, Jiang N, Li Y. Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos Sci Technol. 2014;104:26–33.
  • Wang Z-H, Yuan L-X, Shao Q-G, et al. Mn3O4 nanocrystals anchored on multi-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Mater Lett. 2012;80:110–113.
  • Sarkar S, Das PK. Statistical analysis of mechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Mater Chem Phys. 2012;137:511–518.
  • Yu M, Wan H, Cai L, et al. Fully printed flexible dual-gate carbon nanotube thin-film transistors with tunable ambipolar characteristics for complementary logic circuits. ACS Nano. 2018;12:11572–11578.
  • Xing W, Yang W, Yang W, et al. Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. ACS Appl Mater Interfaces. 2016;8:26266–26274.
  • Janas D, Rdest M, Koziol KKK. Flame-retardant carbon nanotube films. Appl Surf Sci. 2017;411:177–181.
  • Beyer G. Polymer–carbon nanotube composites for flame-retardant cable applications. In: McNally T, Pötschke P, editors. Polym.-carbon nanotube compos. Eupen, Belgium: Woodhead Publishing; 2011; p. 746–759.
  • Wu Z, Wang H, Tian X, et al. Mechanical and flame-retardant properties of styrene–ethylene–butylene–styrene/carbon nanotube composites containing bisphenol A bis(diphenyl phosphate). Compos Sci Technol. 2013;82:8–14.
  • Datsyuk V, Kalyva M, Papagelis K, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008;46:833–840.
  • Seligra PG, Nuevo F, Lamanna M, et al. Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Compos Part B. 2013;46:61–68.
  • He Q, Yuan T, Yan X, et al. Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight. Macromol Chem Phys. 2014;215:327–340.
  • Xu G, Cheng J, Wu H, et al. Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly(ethylene vinyl acetate) nanocomposites. Polym Compos. 2013;34:109–121.
  • Ma H-Y, Tong L-F, Xu Z-B, et al. Functionalizing carbon nanotubes by grafting on Intumescent flame retardant: nanocomposite synthesis, morphology, rheology, and flammability. Adv Funct Mater. 2008;18:414–421.
  • Muleja AA, Mbianda XY, Krause RW, et al. Synthesis, characterization and thermal decomposition behaviour of triphenylphosphine-linked multiwalled carbon nanotubes. Carbon. 2012;50:2741–2751.
  • Xie X-L, Mai Y-W, Zhou X-P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R: Rep. 2005;49:89–112.
  • Cheng J, Pu H. Influences of matrix viscosity on alignment of multi-walled carbon nanotubes in one-dimensional confined space. Eur Polym J. 2017;89:431–439.
  • Cheng J, Pu H, Du J. A processing method with high efficiency for low density polyethylene nanofibers reinforced by aligned carbon nanotubes via nanolayer coextrusion. Polymer. 2017;111:222–228.
  • Li Z, Luo G, Wei F, et al. Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos Sci Technol. 2006;66:1022–1029.
  • Wang L, Yu J, Tang Z, et al. Synthesis, characteristic, and flammability of modified carbon nanotube/poly(ethylene-co-vinyl acetate) nanocomposites containing phosphorus and silicon. J Mater Sci. 2010;45:6668–6676.
  • Luo J, Liu Y, Wei H, et al. A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chem. 2017;19:1052–1062.
  • Gupta VK, Moradi O, Tyagi I, et al. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol. 2016;46:93–118.
  • Ma W, Zhao Y, Li Y, et al. Synthesis of hydrophilic carbon nanotubes by grafting poly(methyl methacrylate) via click reaction and its effect on poly(vinylidene fluoride)-carbon nanotube composite membrane properties. Appl Surf Sci. 2018;435:79–90.
  • Ma W, Zhao Y, Zhu Z, et al. Synthesis of poly(methyl methacrylate) grafted multiwalled carbon nanotubes via a combination of RAFT and alkyne-azide click reaction. Appl Sci. 2019;9:603.
  • Xue S, Yang H, Ma W, et al. Preparation and kinetic characterization of attapulgite grafted with poly(methyl methacrylate) via R-supported RAFT polymerization. J Polym Res. 2017;24:83.
  • Wu G, Liu S, Wu X, et al. Core-shell structure of carbon nanotube nanocapsules reinforced poly(lactic acid) composites. J Appl Polym Sci. 2017;134:44919.
  • Xu Q, Jin C, Jiang Y. Compare the flammability of two extruded polystyrene foams with micro-scale combustion calorimeter and cone calorimeter tests. J Therm Anal Calorim. 2017;127:2359–2366.
  • Schartel B, Braun U, Knoll U, et al. Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites. Polym Eng Sci. 2008;48:149–158.
  • Huang G, Huo S, Xu X, et al. Realizing simultaneous improvements in mechanical strength, flame retardancy and smoke suppression of ABS nanocomposites from multifunctional graphene. Compos Part B. 2019;177:107377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.