Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 51, 2022 - Issue 2
130
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Thermal degradation mechanism and thermal life of PMMA/hydroxylated MWCNT nanocomposites

, &
Pages 98-108 | Received 27 Mar 2021, Accepted 08 Jun 2021, Published online: 21 Jun 2021

Reference

  • Nampoothiri PK, Gandhi MN, Kulkarni AR. Elucidating the stabilizing effect of oleic acid coated LaF3: Nd3+ nanoparticle surface in the thermal degradation of PMMA nanocomposites. Mater Chem Phys. 2017;190:45–52.
  • Hu YH, Chen CY. The effect of groups on the thermal degradation of poly(methyl methacrylate). Polym Degrad Stab. 2003;82(1):81–88.
  • Akat H, Tasdelen MA, Prez FD, et al. Synthesis and characterization of polymer/clay nanocomposites bt intercalated chain transfer agent. Eur Polym J. 2008;44(7):1949–1954.
  • Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic inorganic nanocomposites- rareview. Prog Polym Sci. 2013;38(8):1232–1261.
  • Kashiwagi T, Inaba A, Brown J E. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules. 1986;19(8):2160–2168.
  • Grassie N, Scott G editor. Polymer degradation and stabilization. Cambridge: Cambridge University Press, 1985: 74–83.
  • Zhang ZJ, Cao CL, Yang SJ, et al. Effect of antioxidant on thermal oxidation stability of PMMA resin and kinetic analysis. J China Plast. 2012;26(2):78–82.
  • Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater. 1996;8(1):29–35.
  • Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15(1–2):31–49.
  • Bettina D, Karen-alessa W, Daniel H, et al. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab. 2013;98(8):1495–1505.
  • Sun G, Ceng G, Liu Z, et al. Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon N Y. 2010;48(5):1434–1440.
  • Kashiwagi T, Grulke E, Hilding J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer (Guildf). 2004;45(12):4227–4239.
  • Liang Y, Gu PC, Yao W, et al. Adsorption of radioactive uranium in water environment by carbon-based nanomaterial. J Chem Prog. 2017;29(9):1062–1071.
  • Yang D, Hu Y, Song L, et al. Catalyzing carbonization function of α-ZrP based intumescent fire retardant polypropylene nanocomposites. Polym Degrad Stab. 2008;93(11):2014–2018.
  • Galganoa A, Brancaa C, Blasibc CD, et al. Modeling the ignition of poly(methyl methacrylate)/carbon nanotube nanocomposites. Polym Degrad Stab. 2017;144(10):344–353.
  • da Silva Leite Coelho PH, Marchesin MS, Morales AR, et al. Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites. Mater Res. 2014;17(1):127–132.
  • Kim S, Kafi AA, Bafekpour E, et al. Wettability investigation of UV/O3 and acid functionalized MWCNT and MWCNT/PMMA nanocomposites by contact angle measurement. J Nanomater. 2015;16(1):1–12.
  • Orhan T, Isitman NA, Hacaloglu J, et al. Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes. Polym Degrad Stab. 2012;97(3):273–280.
  • Ayanoğlua ZG, Doğan M. Characterization and thermal kinetic analysis of PMMA/modified-MWCNT nanocomposites. Diam Relat Mater. 2020;108:107950.
  • Sreehitha PR, Durga B, Balachandran M. Dielectric properties, thermal characteristics and degradation kinetics of PMMA nanodielectrics. Mater Today . 2020;24:772–781.
  • Shang YD. Preparation, structure and properties of graphene/poly (methyl methacrylate) composites. Northwestern Polytechnical University, 2017.
  • Zeng WR, Li SF, Zhou YJ, et al. Study on chemical kinetics of thermal oxidation degradation of polymethyl methacrylate. J Chem Phys. 2003;16(1):64–68.
  • Grassie N, Scott G. Polymer degradation and stabilization. Cambridge: Cambridge University Press; 1985.
  • Parameswaranpillai J, Joseph G, Sidhardhan SK, et al. Miscibility, UV resistance, thermal degradation, and mechanical properties of PMMA/SAN blends and their composites with MWCNTs. J Appl Polym Sci, 2016, DOI: https://doi.org/10.1002/APP.43628.
  • Holland BJ, Hay JN. The effect of polymerisation conditions on the kinetics and mechanisms of thermal degradation of PMMA. Polym Degrad Stab. 2002;77:435–439.
  • Wang R, Xie CZ, Zeng LL, et al. Thermal decomposition behavior and m kinetics of nanocomposites at low-modified ZnO content. RSC Adv. 2019;9:790–800.
  • Peterson JD, Vyazovkin S, Wight CA. Kinetic study of stability effect of oxygen on thermal degradation of poly(methyl methacrylate). J Phys Chem B. 1999;103(38):8087–8092.
  • Gao YX, Tang LH, Ren MY. Study on thermal degradation behavior of polymethyl methacrylate. Chem Prod Tech. 2007;14(6):18–21.
  • Huxtable ST, Cahill DG, Shenogin S, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2(11):731–734.
  • Ding YY, Xu L, Hu GS. Thermogravimetric kinetic analysis of exfoliated poly(methyl methacrylate)/MgFe-LDH nanocomposites. Polym Mat Sci Eng. 2010;26(9):84–88.
  • Li LX, Ren JZ, Liu JJ, et al. Thermal degradation kinetics of PMMA/MWCNT composites. J China Plast. 2018;32(7):78–82.
  • Ellis TS, D‘Angelo JS. Thermal and mechanical properties of a polypropylene nanocomposite. J Appl Polym Sci. 2003;90(6):1639–1647.
  • Khairy M, Amin N H, Kamal R. Optical and kinetics of thermal decomposition of PMMA/ZnO nanocomposites. J Therm Anal Calorim. 2017;128:1811–1824.
  • Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nat. 1964;201:8–14.
  • Kok MV. The chemistry, kinetics, and potential utilization of different origins of bentonite samples. Energy Sources. 2014;(36):173–183.
  • Zhang TL, Hu RZ, Li FP. Oxidative pyrolysis and char combustion. Thermochim Acta. 1994;244:177.
  • Jellinek HHG, editor. In aspects of degradation and stabilization of polymers. Elsevier: Amsterdam, 1978. 247.
  • Hirata T, Kashiwagi T, Brown J E. Thermal and oxidative degradation of poly(methyl methacrylate): weight loss. Macromolecules. 1985;18(7):1410–1418.
  • Zang ZG, Yin H. Non-isothermal decomposition kinetics and lifetime of polyoxypropylene ether. J Zhejiang Univ Eng Sci. 2006;40(4):659–693.
  • Arisawa H, Brill TB. Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA). Combust Flame. 1997;109(3):415–426.
  • Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–1706.
  • Yu BL, Jiang JD, editor. Practical thermal analysis. Beijing: Textile Industry Press,1990:238.
  • Li YZ. Thermal analysis. Beijing: Tsinghua University Press; 1987.
  • Huang NH, Zhang Q, Li ZH. Thermal degradation kinetics and thermal stability of side-group phosphorous copolyesters. J Polym Mat Sci Eng. 2009;25(2):105–108.
  • Li LX. Study on thermal degradation and thermal life of PP/MWCNTs composites. J China Plast. 2018;32(12):106–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.