Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 52, 2023 - Issue 3
289
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microwave absorption analysis of graphene-based hybrid nanocomposites: experimental, numerical and component level testing studies

ORCID Icon, , , ORCID Icon &
Pages 129-144 | Received 24 Aug 2021, Accepted 20 Dec 2021, Published online: 06 Jan 2022

References

  • Bin Zhang H, Yan Q, Zheng WG, et al. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces... 2011;3:918–924. https://doi.org/10.1021/am200021v.
  • Yan DX, Ren PG, Pang H, et al. Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem. 2012;22:18772–18774. https://doi.org/10.1039/c2jm32692b.
  • Das CK, Bhattacharya P, Kalra SS. Graphene and MWCNT: potential candidate for microwave absorbing materials. J Mater Sci Res. 2012;1:126, https://doi.org/10.5539/jmsr.v1n2p126.
  • Singh BP, Prasanta, Choudhary V, Saini P, et al. Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites. J Nanoparticle Res. 2013;15:1–12. https://doi.org/10.1007/s11051-013-1554-0.
  • Salimbeygi G, Nasouri K, Shoushtari AM, et al. Fabrication of polyvinyl alcohol/multi-walled carbon nanotubes composite electrospun nanofibres and their application as microwave absorbing material. Micro Nano Lett. 2013;8:455–459. https://doi.org/10.1049/mnl.2013.0381.
  • Bhattacharya P, Sahoo S, Das CK. Microwave absorption behaviour of MWCNT based nanocomposites in X-band region. Express Polym Lett. 2013;7:212–223. https://doi.org/10.3144/expresspolymlett.2013.20.
  • Liu X, Yin X, Kong L, et al. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon N.Y. 2014;68:501–510. https://doi.org/10.1016/j.carbon.2013.11.027.
  • Yousefi N, Sun X, Lin X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater. 2014;26:5480–5487. https://doi.org/10.1002/adma.201305293.
  • Song WL, Cao MS, Fan LZ, et al. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon N.Y. 2014;77:130–142. https://doi.org/10.1016/j.carbon.2014.05.014.
  • Huang CL, Lou CW, Liu CF, et al. Polypropylene/graphene and polypropylene/carbon fiber conductive composites: mechanical, crystallization and electromagnetic properties. Appl Sci. 2015;5:1196–1210. https://doi.org/10.3390/app5041196.
  • Verma M, Verma P, Dhawan SK, et al. Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv. 2015;5:97349–97358. https://doi.org/10.1039/c5ra17276d.
  • Karimi P, Ostoja-Starzewski M, Jasiuk I. Experimental and computational study of shielding effectiveness of polycarbonate carbon nanocomposites. J Appl Phys. 2016;120:145103. https://doi.org/10.1063/1.4964691.
  • Hoghoghifard S, Mokhtari H, Dehghani S. Improving EMI shielding effectiveness and dielectric properties of polyaniline-coated polyester fabric by effective doping and redoping procedures. J Ind Text. 2018;47:587–601. https://doi.org/10.1177/1528083716665630.
  • Lu Z, Ma L, Tan J, et al. Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale. 2016;8:16684–16693. https://doi.org/10.1039/c6nr02619b.
  • Drakakis E, Kymakis E, Tzagkarakis G, et al. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers. Appl Surf Sci. 2017;398:15–18. https://doi.org/10.1016/j.apsusc.2016.12.030.
  • Yun S, Kirakosyan A, Surabhi S, et al. Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption. J Mater Chem C. 2017;5:8436–8443. https://doi.org/10.1039/c7tc02892j.
  • Jan R, Saboor A, Khan AN, et al. Estimating EMI shielding effectiveness of graphene-polymer composites at elevated temperatures. Mater Res Express. 2017;4:085605, https://doi.org/10.1088/2053-1591/aa81e9.
  • Zhang C, Li H, Zhuo Z, et al. Facile fabrication of ultra-light and highly resilient PU/RGO foams for microwave absorption. RSC Adv. 2017;7:41321–41329. https://doi.org/10.1039/c7ra07794g.
  • Jan R, Habib A, Akram MA, et al. Flexible, thin films of graphene-polymer composites for EMI shielding. Mater Res Express. 2017;4:035605, https://doi.org/10.1088/2053-1591/aa6351.
  • Verma M, Chauhan SS, Dhawan SK, et al. Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations. Compos Part B Eng. 2017;120:118–127. https://doi.org/10.1016/j.compositesb.2017.03.068.
  • Guo AP, Zhang XJ, Qu JK, et al. Improved microwave absorption and electromagnetic interference shielding properties based on graphene-barium titanate and polyvinylidene fluoride with varying content. Mater Chem Front. 2017;1:2519–2526. https://doi.org/10.1039/c7qm00204a.
  • Chen CY, Pu NW, Liu YM, et al. Remarkable microwave absorption performance of graphene at a very low loading ratio. Compos Part B Eng. 2017;114:395–403. https://doi.org/10.1016/j.compositesb.2017.02.016.
  • Meng F, Wang H, Huang F, et al. Graphene-based microwave absorbing composites: a review and prospective. Compos Part B Eng. 2018;137:260–277. https://doi.org/10.1016/j.compositesb.2017.11.023.
  • Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;1:1640–1671. https://doi.org/10.1039/c9na00108e.
  • Adel R, Ebrahim S, Shokry A, et al. Nanocomposite of CuInS/ZnS and nitrogen-doped graphene quantum dots for cholesterol sensing. ACS Omega. 2021;6, American Chemical Society. 2167–2176. https://doi.org/10.1021/ACSOMEGA.0C05416.
  • Ebrahim S, Shokry A, Khalil MMA, et al. Polyaniline/Ag nanoparticles/graphene oxide nanocomposite fluorescent sensor for recognition of chromium (VI) ions. Scientific Reports 2020. 2020;10(1):10, Nature Publishing Group: 1–11. https://doi.org/10.1038/s41598-020-70678-8.
  • Shokry A, Khalil MMA, Ibrahim H, et al. Highly luminescent ternary nanocomposite of polyaniline, silver nanoparticles and graphene oxide quantum dots. Sci Rep. 2019;9(1):9, Nature Publishing Group: 1–12. https://doi.org/10.1038/s41598-019-53584-6.
  • Shokry A, Khalil M, Ibrahim H, et al. Acute toxicity assessment of polyaniline/Ag nanoparticles/graphene oxide quantum dots on Cypridopsis Vidua and Artemia Salina. Sci Rep. 2019;11(1):11, Nature Publishing Group: 1–9. https://doi.org/10.1038/s41598-021-84903-5.
  • Shokry, Azza, Ayman El Tahan, Hesham Ibrahim, Moataz Soliman, and Shaker Ebrahim., The development of a ternary nanocomposite for the removal of Cr(VI) ions from aqueous solutions, RSC Adv 9 (2019), The Royal Society of Chemistry: 39187–39200. https://doi.org/10.1039/C9RA08298K.
  • Hu L, Jiang P, Zhang P, et al. Amine-graphene oxide/waterborne polyurethane nanocomposites: effects of different amine modifiers on physical properties. J Mater Sci. 2016;51:8296–8309. https://doi.org/10.1007/s10853-016-9993-5.
  • Strankowski M, Włodarczyk D, Piszczyk Ł, et al. Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J.Spectrosc. 2016;2016: 1–6. https://doi.org/10.1155/2016/7520741.
  • Micheli D, Pastore R, Gradoni G, et al. Reduction of satellite electromagnetic scattering by carbon nanostructured multilayers. Acta Astronaut. 2013;88:61–73. https://doi.org/10.1016/j.actaastro.2013.03.003.
  • Liu H, Dong M, Huang W, et al. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C. 2017;5:73–83. https://doi.org/10.1039/c6tc03713e.
  • Micheli D, Pastore R, Vricella A, et al. Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band. Mater Sci Eng B Solid-State Mater Adv Technol. 2014;188:119–129. https://doi.org/10.1016/j.mseb.2014.07.001.
  • Micheli D, Pastore R, Apollo C, et al. Broadband electromagnetic absorbers using carbon nanostructure-based composites. IEEE Trans Microw Theory Tech. 2011;59:2633–2646. https://doi.org/10.1109/TMTT.2011.2160198.
  • Micheli D, Apollo C, Pastore R, et al. Nanostructured composite materials for electromagnetic interference shielding applications. Acta Astronaut. 2011;69:747–757. https://doi.org/10.1016/j.actaastro.2011.06.004.
  • Micheli D, Marchetti M. Mitigation of human exposure to electromagnetic fields using carbon foam and carbon nanotubes. 2012;4:928–943. https://doi.org/10.4236/eng.2012.412A118.
  • Micheli D, Apollo C, Pastore R, et al. Modeling of microwave absorbing structure using winning particle optimization applied on electrically conductive nanostructured composite material, in. 19th int. Conf. Electr. Mach. ICEM 2010, 2010. https://doi.org/10.1109/ICELMACH.2010.5607881.
  • Micheli D, Apollo C, Pastore R, et al. Optimization of multilayer shields made of composite nanostructured materials. IEEE Trans Electromagn Compat. 2012;54:60–69. https://doi.org/10.1109/TEMC.2011.2171688.
  • Dang S, Lin Y, Wei X, et al. Design and preparation of an ultrawideband gradient triple-layered planar microwave absorber using flaky carbonyl iron as absorbent. J Mater Sci Mater Electron. 2018;29:17651–17660. https://doi.org/10.1007/s10854-018-9869-3.
  • Jiang L, Li X, Zhang J. Design of high performance multilayer microwave absorbers using fast pareto genetic algorithm. Sci China Ser E Technol Sci. 2009;52:2749–2757. https://doi.org/10.1007/s11431-009-0145-x.
  • Panwar R, Agarwala V, Singh D. Design and experimental verification of a thin broadband nanocomposite multilayer microwave absorber using genetic algorithm based approach, in. AIP conf. Proc., AIP Publishing LLC, 2014: pp. 406–415. https://doi.org/10.1063/1.4898273.
  • Kumar A, Singh S, Singh D. Development of Double layer microwave absorber using genetic algorithm, in. IOP conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2017: p. 012009. https://doi.org/10.1088/1757-899X/234/1/012009.
  • Singh S, Sinha A, Zunke RH, et al. Double layer microwave absorber based on Cu dispersed SiC composites. Adv Powder Technol. 2018;29:2019–2026. https://doi.org/10.1016/j.apt.2018.05.008.
  • Wang F, Yang X, Liu X, et al. Design of an ultra-thin absorption layer with magnetic materials based on genetic algorithm at the S band. J Magn Magn Mater. 2018;451:770–773. https://doi.org/10.1016/j.jmmm.2017.12.025.
  • Al-Zoubi OH, Naseem H. Enhancing the performance of the microwave absorbing materials by using dielectric resonator arrays. Model Simul Eng. 2017;2017, https://doi.org/10.1155/2017/3658247.
  • Santhosi BVSRN, Ramji K, Rao NBRM. Design and development of polymeric nanocomposite reinforced with graphene for effective EMI shielding in X-band. Phys B Condens Matter. 2020;586:412144, https://doi.org/10.1016/j.physb.2020.412144.
  • Santhosi BVSRN, Ramji K, Rao NM. Microwave absorption performance enhancement using glass fiber-reinforced polymer nanocomposites containing dielectric fillers in X-band. Polym Polym Compos. 2021;29:444–455. https://doi.org/10.1177/0967391120923505.
  • Santhosi BVSRN, Ramji K, Rao NBRM, et al. Comparative study of polymer-based nanocomposites microwave absorption performance in X-band. Mater Res Express. 2020;7:015324, https://doi.org/10.1088/2053-1591/ab621e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.