Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 52, 2023 - Issue 3
377
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Facile synthesis of melamine phytates and its application in rigid polyurethane foam composites targets for improving fire safety

, , , , , , , & ORCID Icon show all

References

  • Pan HF, Shen Q, Zhang ZN, et al. MoS2-filled coating on flexible polyurethane foam via layer-by-layer assembly technique: flame-retardant and smoke suppression properties. J Mater Sci. 2018;53(12):9340–9349. doi:10.1007/s10853-018-2199-2.
  • Dong MY, Li Q, Liu H, et al. Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer. 2018;158:381–390. doi:10.1016/j.polymer.2018.11.003.
  • Tang G, Zhou L, Zhang P, et al. Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. J Therm Anal Calorim. 2020;140(2):625–636. doi:10.1007/s10973-019-08897-z.
  • Tan CJ, Lee JJL, Ang BC, et al. Design of polyurethane fibers: relation between the spinning technique and the resulting fiber topology. J Appl Polym Sci. 2019;136(26):47706), doi:10.1002/app.47706.
  • Liu LB, Xu Y, He YT, et al. An effective mono-component intumescent flame retardant for the enhancement of water resistance and fire safety of thermoplastic polyurethane composites. Polym Degrad Stab. 2019;167:146–156. doi:10.1016/j.polymdegradstab.2019.07.006.
  • Liu YL, He JY, Yang RJ. The synthesis of melamine-based polyether polyol and its effects on the flame retardancy and physical-mechanical property of rigid polyurethane foam. J Mater Sci. 2017;52(8):4700–4712. doi:10.1007/s10853-016-0713-y.
  • Furtwengler P, Avérous L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem. 2018;9(32):4258–4287. doi:10.1039/C8PY00827B.
  • Yang R, Hu WT, Xu L, et al. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym Degrad Stab. 2015;122:102–109. doi:10.1016/j.polymdegradstab.2015.10.007.
  • Xu WZ, Wang GS, Xu JY, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam. J Hazard Mater. 2019;379:120819), doi:10.1016/j.jhazmat.2019.120819.
  • Xi W, Qian LJ, Chen YJ, et al. Addition flame-retardant behaviors of expandable graphite and [bis (2-hydroxyethyl) amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polym Degrad Stab. 2015;122:36–43. doi:10.1016/j.polymdegradstab.2015.10.013.
  • Liu DY, Zhao B, Wang JS, et al. Flame retardation and thermal stability of novel phosphoramide/expandable graphite in rigid polyurethane foam. J Appl Polym Sci. 2018;135(27):46434), doi:10.1002/app.46434.
  • Han JP, Liang GZ, Gu AJ, et al. A novel inorganic-organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. J Mater Chem A. 2013;1(6):2169–2182. doi:10.1039/C2TA00996J.
  • Luo FB, Wu K, Li YW, et al. Reactive flame retardant with core-shell structure and its flame retardancy in rigid polyurethane foam. J Appl Polym Sci. 2015;132(46):42800), doi:10.1002/app.42800.
  • Acuña P, Li Z, Santiago-Calvo M, et al. Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behaviour and compression performance of a rigid polyurethane foam. Polymers (Basel). 2019;11(1):168), doi:10.3390/polym11010168.
  • Zheng ZH, Liu SF, Wang BN, et al. Preparation of a novel phosphorus-and nitrogen-containing flame retardant and its synergistic effect in the intumescent flame-retarding polypropylene system. Polym Compos. 2015;36(9):1606–1619. doi:10.1002/pc.23069.
  • Wang PJ, Liao DJ, Hu XP, et al. Facile fabrication of biobased PNC-containing nano-layered hybrid: preparation, growth mechanism and its efficient fire retardancy in epoxy. Polym Degrad Stab. 2019;159:153–162. doi:10.1016/j.polymdegradstab.2018.11.024.
  • Hu XM, Wang DM. Enhanced fire behavior of rigid polyurethane foam by intumescent flame retardants. J Appl Polym Sci. 2013;129(1):238–246. doi:10.1002/app.38722.
  • He WD, Zhou Y, Chen XL, et al. Novel intumescent flame retardant masterbatch prepared through different processes and its application in EPDM/PP thermoplastic elastomer: thermal stability, flame retardancy, and mechanical properties. Polymers (Basel). 2019;11(1):50), doi:10.3390/polym11010050.
  • Zhang SD, Liu F, Peng HQ, et al. Preparation of novel C-6 position carboxyl corn starch by a Green method and its application in flame retardance of epoxy resin. Ind Eng Chem Res. 2015;54(48):11944–11952. doi:10.1021/acs.iecr.5b03266.
  • Li P, Sirviö JA, Hong S, et al. Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment. Chem Eng J. 2019;375:122050), doi:10.1016/j.cej.2019.122050.
  • Liu XD, Sun J, Zhang S, et al. Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane. Polym Degrad Stab. 2019;160:168–176. doi:10.1016/j.polymdegradstab.2018.12.019.
  • Dusková D, Marounek M, Brezina P. Determination of phytic acid in feeds and faeces of pigs and poultry by capillary isotachophoresis. J Sci Food Agric. 2001;81(1):36–41. doi:10.1002/1097-0010(20010101)81:1<36::AID-JSFA776>3.0.CO;2-A.
  • Shen D, Xu YJ, Long JW, et al. Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: thermal stability, flame retardance and pyrolysis behavior. J Anal Appl Pyrolysis. 2017;128:54–63. doi:10.1016/j.jaap.2017.10.025.
  • Gao S, Liu GS. Synthesis of amino trimethylene phosphonic acid melamine salt and its application in flame-retarded polypropylene. J Appl Polym Sci. 2018;135(22):46274), doi:10.1002/app.46274.
  • Tang G, Liu XL, Zhou L, et al. Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams. Adv Powder Technol. 2019;31(1):279–286. doi:10.1016/j.apt.2019.10.020.
  • Wu CS, Liu YL, Chiu YS. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer. 2002;43(15):4277–4284. doi:10.1016/S0032-3861(02)00234-3.
  • Hu XP, Li YL, Wang YZ. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol Mater Eng. 2004;289:208–212. doi:10.1002/mame.200300189.
  • Huang GX, He J, Narron R, et al. Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene. ACS Sustain Chem Eng. 2017;5(12):11770–11779. doi:10.1021/acssuschemeng.7b03415.
  • Huang ST, Wang GL, Li NB, et al. Mechanism of the pH-induced aggregation reaction between melamine and phosphate. RSC Adv. 2012;2(29):10948–10954. doi:10.1039/C2RA21415F.
  • Shang S, Yuan BH, Sun YR, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J Colloid Interface Sci. 2019;553:364–371. doi:10.1016/j.jcis.2019.06.015.
  • Dong J, Wen Y, Miao Y, et al. A nanoporous zirconium phytate film for immobilization of redox protein and the direct electrochemical biosensor. Sens Actuator B-Chem. 2010;150:141–147. doi:10.1016/j.snb.2010.07.029.
  • Gao X, Zhao CC, Lu HF, et al. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions. Electrochim Acta. 2014;150(1):188–196. doi:10.1016/j.electacta.2014.09.160.
  • Jiang GP, Qiao JL, Hong F. Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int J Hydrog Energy. 2012;37(11):9182–9192. doi:10.1016/j.ijhydene.2012.02.195.
  • Sun P, Li ZF, Song MF, et al. Preparation and characterization of zirconium phytate as a novel solid intermediate temperature proton conductor. Mater Lett. 2017;191:161–164. doi:10.1016/j.matlet.2016.12.076.
  • Valappil SP, Ready D, Neel EAA. Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater. 2008;18:732–741. doi:10.1002/adfm.200700931.
  • Wu SH, Deng D, Zhou L, et al. Flame retardancy and thermal degradation of rigid polyurethane foams composites based on aluminum hypophosphite. Mater Res Express. 2019;6(10):105365), doi:10.1088/2053-1591/ab41b2.
  • Chattopadhyay DX, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34(10):1068–1133. doi:10.1016/j.progpolymsci.2009.06.002.
  • Chen MJ, Chen CR, Tan Y, et al. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross-linking agent. Ind Eng Chem Res. 2014;53(3):1160–1171. doi:10.1021/ie4036753.
  • Yuan Y, Ma C, Shi YQ, et al. Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound. Mater Chem Phys. 2018;211:42–53. doi:10.1016/j.matchemphys.2018.02.007.
  • Modesti M, Lorenzetti A, Besco S, et al. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams. Polym Degrad Stab. 2008;93(12):2166–2171. doi:10.1016/j.polymdegradstab.2008.08.005.
  • Zhang T, Yan HQ, Shen L, et al. A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene. RSC Adv. 2014;4(89):48285–48292. doi:10.1039/C4RA09243K.
  • Wang X, Zhang P, Huang ZC, et al. Effect of aluminum diethylphosphinate on the thermal stability and flame retardancy of flexible polyurethane foams. Fire Saf J. 2019;106:72–79. doi:10.1016/j.firesaf.2019.04.001.
  • Shi XX, Jiang SH, Zhu JY, et al. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. RSC Adv. 2018;8(18):9985–9995. doi:10.1039/C7RA13315D.
  • Jiang ZL, Wang CS, Fang SY, et al. Durable flame-retardant and antidroplet finishing of polyester fabrics with flexible polysiloxane and phytic acid through layer-by-layer assembly and sol-gel process. J Appl Polym Sci. 2018;135(27):46414), doi:10.1002/app.46414.
  • Wang D, Song L, Zhou KQ, et al. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J Mater Chem A. 2015;3(27):14307–14317. doi:10.1039/C5TA01720C.
  • Zhou KQ, Gui Z, Hu Y. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos Part A-Appl S. 2016;80:217–227. doi:10.1016/j.compositesa.2015.10.029.
  • Zhang JH, Kong QH, Yang LW, et al. Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem. 2016;18(10):3066–3074. doi:10.1039/C5GC03048J.
  • Wang X, Zhou S, Xing WY, et al. Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J Mater Chem A. 2013;1(13):4383–4390. doi:10.1039/C3TA00035D.
  • Tang G, Liu XL, Yang YD, et al. Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams. Adv Powder Tech. 2020;31(4):1420–1430. doi:10.1016/j.apt.2020.01.019.
  • Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloy Compd. 2019;781:201–208. doi:10.1016/j.jallcom.2018.11.375.
  • Wang JL, Zhan J, Mu XW, et al. Manganese phytate dotted polyaniline shell enwrapped carbon nanotube: towards the reinforcements in fire safety and mechanical property of polymer. J Colloid Interface Sci. 2018;529:345–356. doi:10.1016/j.jcis.2018.06.038.
  • Yuan Y, Yu B, Shi YQ, et al. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation. Compos Part A-Appl S. 2018;112:142–154. doi:10.1016/j.compositesa.2018.05.028.
  • Yuan BH, Fan A, Yang M, et al. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab. 2017;143:42–56. doi:10.1016/j.polymdegradstab.2017.06.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.