Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 52, 2023 - Issue 3
188
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

High-speed impact analysis of reinforced GFRP sandwich structure with lattice core using experimental and finite element methods

&
Pages 171-185 | Received 27 Dec 2021, Accepted 13 Jul 2022, Published online: 27 Jul 2022

References

  • Hashemi S, Jafari AA. An analytical solution for nonlinear vibrations analysis of functionally graded plate using modified Lindstedt–Poincare method. Int J Appl Mech. 2020;12(01):2050003. DOI:10.1142/S1758825120500039.
  • Hashemi S, Jafari AA. Nonlinear free and forced vibrations of in-plane bi-directional functionally graded rectangular plate with temperature-dependent properties. Int J Struct Stab Dyn. 2020;20(08):2050097. DOI:10.1142/S0219455420500972.
  • Hashemi S, Jafari AA. An analytical solution for nonlinear vibration analysis of functionally graded rectangular plate in contact with fluid. Adv Appl Math Mech. 2021;13(4):914–941. DOI:10.4208/aamm.OA-2019-0333.
  • Hashemi S, Zamani F, Eftekhari A, et al. On the vibration of functionally graded annular plate with elastic edge supports and resting on Winkler foundation. Aust J Mech Eng. 2021:1–6. DOI:10.1080/14484846.2021.1918868.
  • Hashemi S, Shahri PK, Beigzadeh S, et al. Nonlinear free vibration analysis of in-plane bi-directional functionally graded plate with porosities resting on elastic foundations. Int J Appl Mech. 2022;14(01):2150131. DOI:10.1142/S1758825121501313.
  • Hashemi S, Jafari AA. Nonlinear vibration analysis of functionally graded plate in contact with fluid: analytical study. Iranian J Mech Eng Trans ISME. 2020;21(1):110–134.
  • Hashemi S, Jafari AA. An analytical study for nonlinear vibration analysis of two-directional functionally graded rectangular plate. Iranian J Mech Eng Trans ISME. 2020;21(2). DOI:10.30506/jmee.2020.112273.1193.
  • Hashemi S, Jafari AA. Nonlinear free vibration analysis of functionally graded rectangular plate using modified Lindstedt-Poincare method. J Sci Technol Compos. 2020;6(4):637–648. DOI:10.22068/jstc.2019.106866.1542.
  • Hashemi S, Jafari AA. Nonlinear free vibration analysis of bi-directional functionally graded rectangular plates. J Solid Fluid Mech. 2020;10(1):31–52. DOI:10.22044/jsfm.2020.9012.3046.
  • Buitrago BL, Santiuste C, Sánchez-Sáez S, et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact. Compos Struct. 2010;92(9):2090–2096.
  • Ivañez I, Santiuste C, Barbero E, et al. Numerical modelling of foam-cored sandwich plates under high-velocity impact. Compos Struct. 2011;93(9):2392–2399.
  • Nasirzadeh R, Sabet AR. Study of foam density variations in composite sandwich panels under high velocity impact loading. Int J Impact Eng. 2014;63:129–139.
  • Norouzi H, Rostamiyan Y. Experimental and numerical study of flatwise compression behavior of carbon fiber composite sandwich panels with new lattice cores. Constr Build Mater. 2015;100:22–30.
  • Chan S, Fawaz Z, Behdinan K, et al. Ballistic limit prediction using a numerical model with progressive damage capability. Compos Struct. 2007;77(4):466–474.
  • Goldsmith W, Dharan CK, Chang H. Quasi-static and ballistic perforation of carbon fiber laminates. Int J Solids Struct. 1995;32(1):89–103.
  • Pirmohammad N, Liaghat GH, Pol MH, et al. Analytical, experimental and numerical investigation of sandwich panels made of honeycomb core subjected projectile impact. Modares Mech Eng. 2014;14(6):153–164.
  • Johnson AF, Holzapfel M. Modelling soft body impact on composite structures. Compos Struct. 2003;61(1–2):103–113.
  • Woo SC, Choi NS. Analysis of fracture process in single-edge-notched laminated composites based on the high amplitude acoustic emission events. Compos Sci Technol. 2007;67(7–8):1451–1458.
  • Deka LJ, Bartus SD, Vaidya UK. Multi-site impact response of S2-glass/epoxy composite laminates. Compos Sci Technol. 2009;69(6):725–735.
  • Naik NK, Shrirao P. Composite structures under ballistic impact. Compos Struct. 2004;66(1–4):579–590.
  • López-Puente J, Zaera R, Navarro C. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Compos A: Appl Sci Manuf. 2008;39(2):374–387.
  • Pernas-Sánchez J, Artero-Guerrero JA, Viñuela JZ, et al. Numerical analysis of high velocity impacts on unidirectional laminates. Compos Struct. 2014;107:629–634.
  • Fereidoon A, Mashhadzadeh AH, Rostamiyan Y. Experimental, modeling and optimization study on the mechanical properties of epoxy/high-impact polystyrene/multi-walled carbon nanotube ternary nanocomposite using artificial neural network and genetic algorithm. Sci Eng Compos Mater. 2013;20(3):265–276.
  • Ivañez I, Sánchez-Saez S, Garcia-Castillo SK, et al. High-velocity impact behaviour of damaged sandwich plates with agglomerated cork core. Compos Struct. 2020;248:112520.
  • Sergi C, Sarasini F, Russo P, et al. Experimental and numerical analysis of the ballistic response of agglomerated cork and its bio-based sandwich structures. Eng Fail Anal. 2022;131:105904.
  • Acanfora V, Saputo S, Russo A, et al. A feasibility study on additive manufactured hybrid metal/composite shock absorbers. Compos Struct. 2021;268:113958.
  • Veloso V. Simulation of the behavior of lattice structured impact absorbers manufactured by additive manufacturing. Mat Design Process Commun. 2021;3(5):e248.
  • Tao W, Leu MC. Design of lattice structure for additive manufacturing. In 2016 International Symposium on Flexible Automation (ISFA). IEEE; 2016. p. 325–332.
  • Acanfora V, Corvino C, Saputo S, et al. Application of an additive manufactured hybrid metal/composite shock absorber panel to a military seat ejection system. Appl Sci. 2021;11(14):6473.
  • Sprenger S, Kothmann MH, Altstaedt V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos Sci Technol. 2014;105:86–95.
  • Tsai JL, Huang BH, Cheng YL. Enhancing fracture toughness of glass/epoxy composites for wind blades using silica nanoparticles and rubber particles. Procedia Eng. 2011;14:1982–1987.
  • Manjunatha CM, Taylor AC, Kinloch AJ, et al. The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite. Compos Sci Technol. 2010;70(1):193–199.
  • Mashhadzadeh AH, Fereidoon A, Rostamiyan Y, et al. Using Taguchi approach for optimizing mechanical properties of hybrid laminates nanocomposite. Proc Inst Mech Eng E: J Pro. 2017;231(4):773–785.
  • Rostamiyan Y, Ferasat A. High-speed impact and mechanical strength of ZrO2/polycarbonate nanocomposite. Int J Damage Mech. 2017;26(7):989–1002.
  • Li C, Shen HS, Yang J, et al. Low-velocity impact response of sandwich plates with GRC face sheets and FG auxetic 3D lattice cores. Eng Anal Boundary Elem. 2021;132:335–344.
  • Zhou X, Qu C, Luo Y, et al. Compression behavior and impact energy absorption characteristics of 3D printed polymer lattices and their hybrid sandwich structures. J Mater Eng Perform. 2021;30(12):8763–8770.
  • Dogan A. Low-velocity impact, bending, and compression response of carbon fiber/epoxy-based sandwich composites with different types of core materials. J Sandwich Struct Mater. 2021;23(6):1956–1971.
  • Dogan A, Arikan V. Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites. Compos Part B: Eng. 2017;127:63–69.
  • Khaledi H, Rostamiyan Y. Experimental and numerical investigation on bending and compressive behavior of carbon-epoxy sandwich panel with novel M-shaped core. J Thermoplast Compos Mater. 2022:08927057211046653.
  • Eratbeni MG, Rostamiyan Y, Seyyedi SM. An experimental and numerical study on the vibration characteristics of glass fiber composite sandwich panel with lattice cores. Proc Inst Mech Eng L: J Mat. 2022:14644207221075895.
  • ASTM D. Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken (PA): ASTM International; 2008.
  • Dogan A, Arman Y. The effect of hygrothermal aging and UV radiation on the low-velocity impact behavior of the glass fiber-reinforced epoxy composites. Iran Polym J. 2019;28(3):193–201.
  • Gao N, Zhang Z, Deng J, et al. Acoustic metamaterials for noise reduction: a review. Adv Mater Technol. 2022. DOI:10.1002/admt.202100698.
  • Lu T, Yan W, Feng G, et al. Singlet oxygen-promoted one-pot synthesis of highly ordered mesoporous silica materials via the radical route. Green Chem. 2022. DOI:10.1039/D2GC00869F.
  • Jiang L, Wang Y, Wang X, et al. Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Compos Part A Appl Sci Manuf. 2021;147:106461. DOI:10.1016/j.compositesa.2021.106461.
  • Zhang X, Tang Y, Zhang F, et al. A novel aluminum-graphite dual-ion battery. Adv Energy Mater. 2016;6(11):1502588. DOI:10.1002/aenm.201502588.
  • Wang M, Jiang C, Zhang S, et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem. 2018;10(6):667–672. DOI:10.1038/s41557-018-0045-4.
  • Zhang Z, Yang Q, Yu Z, et al. Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding. Mater Charact. 2022;189. DOI:10.1016/j.matchar.2022.111962.
  • Li G, Yuan H, Mou J, et al. Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes. Compos Commun. 2022;29:101043. DOI:10.1016/j.coco.2021.101043.
  • Guo X, Lu J, Lai P, et al. Understanding the fretting corrosion mechanism of zirconium alloy exposed to high temperature high pressure water. Corros Sci. 2022. DOI:10.1016/j.corsci.2022.110300.
  • Zhang Z, Ma P, Ahmed R, et al. Advanced point-of-care testing technologies for human acute respiratory virus detection. Adv Mater (Weinheim). 2021:2103646. DOI:10.1002/adma.202103646.
  • Liu C, Zhao Y, Wang Y, et al. Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears. ASME J Mech Des. 2021;143(12):123401. DOI:10.1115/1.4051137.
  • Lai W, Tang R, Wong W. Ionically crosslinked complex gels loaded with oleic acid-containing vesicles for transdermal drug delivery. Pharmaceutics. 2020;12(8):725. DOI:10.3390/pharmaceutics12080725.
  • Li H, Zhang Y, Tai Y, et al. Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing. Opt Laser Technol. 2022;148:107717. DOI:10.1016/j.optlastec.2021.107717.
  • Li Z, Li H, Zhu X, et al. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv Sci. 2022;9:e2105331. DOI:10.1002/advs.202105331.
  • Shi D, Chen Y, Li Z, et al. Anisotropic charge transport enabling high-throughput and high-aspect-ratio wet etching of silicon carbide. Small Methods. 2022:2200329. DOI:10.1002/smtd.202200329.
  • Bui TQ, Hu X. A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech. 2021;248:107705.
  • Zhang P, Yao W, Hu X, et al. An explicit phase field model for progressive tensile failure of composites. Eng Fract Mech. 2021;241:107371.
  • Quintanas-Corominas A, Reinoso J, Casoni E, et al. A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials. Compos Struct. 2019;220:899–911.
  • Zhang C, Huang J, Li X, et al. Numerical study of the damage behavior of carbon fiber/glass fiber hybrid composite laminates under low-velocity impact. Fibers Polym. 2020;21(12):2873–2887.
  • Zhang P, Hu X, Bui TQ, et al. Phase field modeling of fracture in fiber reinforced composite laminate. Int J Mech Sci. 2019;161:105008.
  • Zhang P, Hu X, Wang X, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus. Eng Fract Mech. 2018;204:268–287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.