Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 52, 2023 - Issue 3
295
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Thermal stability and rheological properties of PMMA/B2O3 nanocomposites synthesised by melting method

ORCID Icon, , , , , & show all
Pages 186-196 | Received 16 Jan 2022, Accepted 23 Jul 2022, Published online: 08 Aug 2022

References

  • Guo M, Kashfipour MA, Li Y, et al. Structure–rheology–property relationships in double-percolated polypropylene/poly(methyl methacrylate)/boron nitride polymer composites. Compos Sci Technol. 2020;198:108306. DOI:10.1016/j.compscitech.2020.108306.
  • Seo SD, Kang KC, Jeong JW, et al. Preparation and characterization of poly methyl methacrylate/clay nanocomposite powders by microwave-assisted in-situ suspension polymerization. J Nanosci Nanotechnol. 2020;20:4193–4197. DOI:10.1166/jnn.2020.17574.
  • Qin L, Li G, Hou J, et al. Preparation, characterization, and thermal properties of poly (methyl methacrylate)/boron nitride composites by bulk polymerization. Polym Compos. 2015;36(9):1675–1684. doi:10.1002/pc.23078.
  • Zhao XY, Sun ZY, Ji JQ, et al. Design, synthesis and characterisation of novel photoresponsive poly(methyl methacrylate). Mater Res Innovations. 2013;18(6):451–456. DOI:10.1179/1433075(13y.0000000172.
  • Kul E, Aladağ İ. The physically and mechanically reinforcement of polymethylmethacrylate denture base material. J Dentistry Faculty Atatürk Univ. 2016;15:102–108.
  • Amir N, Taher A, Ayub G. Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J Appl Polym Sci. 2016;133(31):43738–43746. DOI:10.1002/app.43738.
  • Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont. 2013;5(2):153–160. DOI:10.4047/jap.2013.5.2.153.
  • Ayanoğlu ZG, Doğan M. Characterization and thermal kinetic analysis of PMMA/modified-MWCNT nanocomposites. Diamond Relat Mater. 2020;108:107950. DOI:10.1016/j.diamond.2020.107950.
  • Ahmad S, Ahmad S, Agnihotry SA. Nanocomposite electrolytes with fumed silica in poly(methylmethacrylate): thermal, rheological and conductivity studies. J Power Sources. 2005;140:151–156. DOI:10.1016/j.jpowsour.2004.08.002.
  • Elimat ZM, Zihlif AM, Avella M. Thermal and optical properties of poly(methyl methacrylate)/calcium carbonate nanocomposite. J Exp Nanosci. 2008;3(4):259–269. DOI:10.1080/17458080802603715.
  • Mantilaka MMMGPG, Karunaratne DGGP, Rajapakse RMG, et al. Precipitated calcium carbonate/poly(methyl methacrylate) nanocomposite using dolomite: synthesis, characterization and properties. Powder Technol. 2013;235:628–632. DOI:10.1016/j.powtec.2012.10.048.
  • Kizilduman BK, Alkan M, Doğan M, et al. Al-pillared-montmorillonite (AlPMt)/poly(methyl methacrylate)(PMMA) nanocomposites:the effects of solvent types and synthesis methods. Adv Mater Sci. 2017;17(53):5–23. DOI:10.1515/adms-2017-0012.
  • Meneghetti P, Qutubuddin S, Webber A. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)–clay nanocomposite. Electrochim Acta. 2004;49:4923–4931. DOI:10.1016/j.electacta.2004.06.023.
  • Yeh JM, Liou SJ, Lai MC, et al. Comparative studies of the properties of poly(methyl methacrylate)-clay nanocomposite materials prepared byin situ emulsion polymerization and solution dispersion. J Appl Polym Sci. 2004;94(5):1936–1946. DOI:10.1002/app.21095.
  • Mohamadian N, Ghorbani H, Wood DA, et al. A hybrid nanocomposite of poly(styrene-methyl methacrylate- acrylic acid) /clay as a novel rheology-improvement additive for drilling fluids. J Polym Res. 2019;26(2):33. DOI:10.1007/s10965-019-1696-6.
  • Ouaad K, Djadoun S, Ferfera-Harrar H, et al. Synthesis and thermal behavior of poly(methyl methacrylate)/maghnia bentonite nanocomposite prepared at room temperature via in situ polymerization initiated by a new Ni(II)alfa-benzoinoxime complex. J Appl Polym Sci. 2011;119(6):3227–3233. DOI:10.1002/app.32872.
  • Diken ME, Doğan S, Turhan Y, et al. Synthesis and characterization of poly(acrylic acid)/organo-modified nanohydroxyapatite nanocomposites: thermal, optical and biocompatibility properties. Adv Mater Sci. 2018;57 18(3):54–67. DOI:10.1515/adms-2017-0041.
  • Doğan S, Özcan T, Doğan M, et al. The effects on antioxidant enzymes of PMMA/hydroxyapatite nanocomposites/composites. Enzyme Microb Technol. 2020;142:109676. DOI:10.1016/j.enzmictec.2020.109676.
  • Wijesinghe WPSL, Mantilaka MMMGPG, Karunarathne TSEF, et al. Synthesis of a hydroxyapatite/poly(methylmethacrylate) nanocomposite using dolomite. Nanoscale Adv. DOI:10.1039/c8na00006a
  • Pehlivan F, Kızılduman BK, Bicil Z, et al. Synthesis, characterization and environmental application of polymethyl methacrylate/glass fiber composite. Fresenius Environ Bull. 2018;27(11):7643–7651.
  • Turhan Y, Doǧan M, Alkan M. Poly(vinyl chloride)/kaolinite nanocomposites: characterization and thermal and optical properties. Ind & Eng Chem Res. 2010;49(4):1503–1513. DOI:10.1021/ie901384x.
  • Colonna M, Berti C, Binassi E, et al. Nanocomposite of montmorillonite with telechelic sulfonated poly(butylene terephthalate): effect of ionic groups on clay dispersion, mechanical and thermal properties. Express Polym Lett. 2010;46(5):918–927. DOI:10.3144/expresspolymlett.2017.38.
  • Cui Y, Kumar S, Rao Kona B, et al. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 2015;5(78):63669–63690. DOI:10.1039/C5RA10333A.
  • Cherifi Z, Boukoussa B, Zaoui A, et al. Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason Sonochem. 2018;48:188–198. DOI:10.1016/j.ultsonch.2018.05.027.
  • Sieradzka M, Fabia J, Binias D, et al. The role of reduced graphene oxide in the suspension polymerization of styrene and its effect on the morphology and thermal properties of the polystyrene/rGO nanocomposites. Polymers (Basel). 2020;12(7):1468. DOI:10.3390/polym12071468.
  • Yadav R, Purwar R. Influence of metal oxide nanoparticles on morphological, structural, rheological and conductive properties of mulberry silk fibroin nanocomposite solutions. Polym Test. 2021;93:106916. DOI:10.1016/j.polymertesting.2020.106916.
  • Kumar M, Kumar V, Muthuraja A, et al. Influence of nanoclay on the rheological properties of PMMA/organoclay nanocomposites prepared by solvent blending technique. Macromol Symp. 2016;365:104–111. DOI:10.1002/masy.201650017.
  • Li JQ, Salovey R. Model filled polymers: The effect of particle size on the rheology of filled poly(methyl methacrylate) composites. Polym Eng Sci. 2004;44(3):452–462. DOI:10.1002/pen.20040.
  • Lin X, Kelly A, Ren D, et al. Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow. J Appl Polym Sci. 2013;130(5):3384–3394.
  • Lin X, Kelly A, Woodhead M, et al. Capillary study on geometrical dependence of shear viscosity of polymer melts. J Appl Polym Sci. 2014;131(6). DOI: 10.1002/APP.39982.
  • Chen Y, Yang Q, Huang Y, et al. Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer. 2015;79:159–170. DOI:10.1016/j.polymer.2015.10.027.
  • Tripathi SN, Malik RS, Choudhary V. Melt rheology and thermomechanical behavior of poly(methyl methacrylate)/reduced graphene oxide nanocomposites. Polym Adv Technol. 2015;26:1558–1566. DOI:10.1002/pat.3581.
  • Zhang XC, Scarpa F, McHale R, et al. Poly(methyl methacrylate)-decorated single wall carbon nanotube/epoxy nanocomposites with re-agglomeration networks: rheology and viscoelastic damping performance. Polymer. 2016;87:236–245. DOI:10.1016/j.polymer.2016.02.002.
  • Beyli PT, Doğan M, Gündüz Z, et al. Synthesis, characterization and their antimicrobial activities of boron oxide/poly(acrylic acid) nanocomposites: thermal and antimicrobial properties. Adv Mater Sci. 2018;18 1(55):29–36. DOI:10.1515/adms-2017-0025.
  • Pittoni PG, Chang YY, Lin SY. Interpretation of the peculiar temperature dependence of surface tension for boron trioxide. J Taiwan Institute Chem Eng. 2012;43:852–859.
  • Yılmaz Z, Doğan M, Alkan M. Rheological and wall slip properties of kaolinite-silicon oil pastes during extrusion. J Ceramic Process Res. 2010;11(6):752–759.
  • https://www.americanelements.com/boron-oxide-powder-1303-86-2.
  • Töre İ, Ay N. Amorphous boroxide production and characterization. 2nd International boron symposium; Eskişehir-Turkey; 2004.
  • E. Eren, Kinetic investigation of boron oxide production from boric acid [Master thesis]: Gazi University Institute of Science; 2005.
  • Mao D, Lu G. The effect of B2O3 addition on the crystallization of amorphous TiO2–ZrO2 mixed oxide. J Solid State Chem. 2007;180(2):484–488. DOI:10.1016/j.jssc.2006.11.009.
  • Moon OM, Kang BC, Lee SB, et al. Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films. 2004;464–465:164–169. DOI:10.1016/j.tsf.2004.05.107.
  • Singh AK, Mishra RK, Prakash R, et al. Specific interactions in partially miscible polycarbonate (PC)/poly(methyl methacrylate) (PMMA) blends. Chem Phys Lett. 2010;486(1–3):32–36. DOI:10.1016/j.cplett.2009.12.072.
  • S.D. Mohapatra, FTIR analysis of Bi2O3-B2O3-Fe2O3 glass system doped with Nd2O3. Department of Ceramic Engineering National Institute of Technology [Thesis for the Degree of Bachelor of Technology]. Rourkela; 2009.
  • Guanming Q, Changhao Y, Chunfang G, et al. Study on properties and synthesis of fluorescence PMMA. J Rare Earths. 2007;25(5):5–8. DOI:10.1016/S1002-0721(07)60512-2.
  • Ferriol M, Gentilhomme A, Cochez M, et al. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab. 2003;70(2):271–281. DOI:10.1016/S0141-3910(02)00291-4.
  • Manring LE, Sogah DY, Cohen GM. Thermal degradation of poly(methyl methacrylate). 3. polymer with head-to-head linkages. Macromolecules. 1989;22:4652–4654. DOI:10.1021/ma00202a048.
  • Zeng WR, Li SF, Chou WK. Chemical kinetics on thermal oxidative degradation of PMMA. Chin J Chem Phys. 2003;16:64–68.
  • Manring LE. Thermal degradation of poly(methyl methacrylate). 4. Random side-group scission. Macromolecules. 1991;24:3304–3309. DOI:10.1021/ma00011a040.
  • Zanetti M, Camino G, Reichert P, et al. Thermal behaviour of poly(propylene) layered silicate nanocomposites. Macromol Rapid Commun. 2001;22:176–180.
  • Doğan M, Yılmaz Z, Alkan M. Characterization and rheological properties of kaolinite−silicon oil pastes. Ind Eng Chem Res. 2008;47(21):8218–8227. DOI:10.1021/ie800727d.
  • Bhattacharya SN. Rheology: fundamentals and measurements. Australia: Royal Melbourne Institute of Technology; 1997.
  • Huang JC, Tao Z. Melt fracture, melt viscosities, and die swell of polypropylene resin in capillary flow. J Appl Polym Sci. 2003;87(10):1587–1594.
  • Dean D, Obore AM, Richmond S, et al. Multiscale fiber-reinforced nanocomposites:synthesis, processing and properties. Compos Sci Technol. 2006;66:2135–2142. DOI:10.1016/j.compscitech.2005.12.015.
  • Kalyon DM, Yaras P, Aral B, et al. Rheological behavior of a concentrated suspension: a solid rocket fuel simulant. J Rheol. 1993;37(1):35–53. DOI:10.1122/1.550435.
  • Yılmazer Ü, Kalyon DM. Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J Rheol. 1989;33(8):1197. DOI:10.1122/1.550049.
  • Mooney M. Explicit formulas for slip and fluidity. J Rheol. 1931;2(2):210–222. DOI:10.1122/1.2116364.
  • Phewthongin N, Saeoui P, Sirisinha C. A study of rheological properties in sulfur-vulcanized CPE/NR blends. Polym Test. 2005;24(2):227–233. DOI:10.1016/j.polymertesting.2004.08.005.
  • Steffe JF. Rheological methods in food process engineering. 2nd ed. East Lansing: Freeman Press; 1996.
  • Kulkarni AR, Soppimath KS, Aminabhavi TM. Rheological properties of the dispersions of starch, guar gum, and their physical mixtures in the temperature interval 298.15–333.15 K. Polym-Plast Technol Eng. 2010;39(3):437–456. DOI:10.1081/PPT-100100039.
  • Rao MA, Cooley HJ. Determination of effective shear rates in rotational viscometers with complex geometries. J Texture Stud. 1984;15(4):327–335. DOI:10.1111/j.1745-4603.1984.tb00390.x.
  • Raghavan SR, Riley MW, Fedkiw PS, et al. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica:  dynamic rheology and microstructure. Chem Mater. 1998;10(1):244–251. DOI:10.1021/cm970406j.
  • Carozza S. Rheological Characterisation of Gels and Foams for Food, Ph.D. Thesis, Technische Universität, München. Dipl Ing-Univ Nr. 2001;101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.