Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 52, 2023 - Issue 5
395
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of acetylene black amount, operating pressure and temperature of capillary rheometer on thermal conductivity in natural rubber

, , &
Pages 276-291 | Received 30 Apr 2021, Accepted 25 Mar 2023, Published online: 10 Apr 2023

References

  • Xu J, Li SX, Li Y, et al. Preparation, morphology and properties of natural rubber/carbon black/multi-walled carbon nanotubes conductive composites. J Mater Sci:Mater Electron. 2016;27:9531–9540. doi:10.1007/s10854-016-5005-4.
  • Bayat H, Fasihi M. Effect of coupling agent on the morphological characteristics of natural rubber/silica composites foams. e-Polymers. 2019;19:430–436. doi:10.1515/epoly-2019-0044.
  • Suntako R. Effect of synthesized ZnO nanoparticles on thermal conductivity and mechanical properties of natural rubber. IOP Conference Series-Materials Science and Engineering. 2018;284:1–5. doi:10.1088/1757-899X/284/1/012017.
  • Farida E, Bukit N, Ginting EM, et al. The effect of carbon black composition in natural rubber compound. case stud. Therm. Eng. 2019;16:1–6. doi10.1016/j.csite.2019.100566.
  • Aguilar-Bolados H, Yazdani-Pedramb M, Verdejo R. Thermal, electrical, and sensing properties of rubber nanocomposites. High-Perform Elastomeric Materials Reinforced By Nano-Carbons: Multifunctional Properties and Industrial Applications. 2020: 149–175. doi:10.1016/B978-0-12-816198-2.00007-4.
  • Gschwandl M, Kerschbaumer RC, Schrittesser B, et al. Thermal Conductivity Measurement of Industrial Rubber Compounds using Laser Flash Analysis: Applicability, Comparison and Evaluation; Liu, SJ.; 2019, 2065, Article Number: 030041. doi:10.1063/1.5088299.
  • Danilova-Tret’yak SM. On thermopyhsical properties of rubbers and their components. J Eng Phys and Thermophys. 2016;89:1388–1393. doi:10.1007/s10891-016-1506-5.
  • Wang ZH, Lu YL, Ding JB, et al. Preparation of nano-reinforced thermal conductive natural rubber composites. Polym Compos. 2016;37:771–781. doi:10.1002/pc.23234.
  • Luo WB, Yin BY, Hu XL, et al. Modeling of the heat build-up of carbon black filled rubber. Polym Test. 2018;69:116–124. doi:10.1016/j.polymertesting.2018.05.017.
  • Dashora P, Saxena NS, Saksena MP, et al. A theoretical study of the temperature dependence of the thermal conductivity of polymers. Phys Scripta. 1992;45:399–401. doi:10.1088/0031-8949/45/4/020.
  • Shen MX, Cui YX, J HE, et al. Thermal conductivity model of filled polymer composites. Int J Minerals. Metall and Mater. 2011;18:623–631. doi:10.1007/s12613-011-0487-9.
  • Ram R, Soni V, Khastgir D. Electrical and thermal conductivity of polyvinylidene fluoride (PVDF) – conducting carbon black (CCB) composites: validation of various theoretical models. Compos B Eng. 2020;185:1–29 doi:10.1016/j.compositesb.2020.107748. Article Number: 107748.
  • Yang Y, Shu JJ, Chen P, et al. Effect of microstructure on thermal conductivity of polymer composites. Macromol Res. 2017;25:344–351. doi:10.1007/s13233-017-5048-2.
  • He Y, Yin Z, Ma LX, et al. Research of thermal conductivity and tensile strength of carbon black-filled nature rubber. Adv Mater Res. 2010;87-88:200–205. doi:10.4028/www.scientific.net/AMR.87-88.200.
  • King JA, Miller MG, Barton RL, et al. Thermal and electrical conductivity of carbon–filled liquid crystal polymer composites. J Appl Polym Sci. 2006;99:1552–1558. doi:10.1002/app.22452.
  • Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog in Polym Sci. 2011;36:914–944. doi:10.1016/j.progpolymsci.2010.11.004.
  • Li HT, Chen W, Xu JZ, et al. Enhanced thermal conductivity by combined fillers in polymer composites. Thermochim Acta. 2019;676:198–204. doi:10.1016/j.tca.2019.04.008.
  • Xu WX, Wu YY, Zhu Y, et al. Molecular dynamics simulation of thermal conductivity of silicone rubber*. Chin Phys. 2020;29;1–15; doi:10.1088/1674-1056/ab7743. Article Number: 046601.
  • Azura AR, Leow SL. Effect of carbon black loading on mechanical, conductivity and ageing properties of natural rubber composites. Mater Today:Proc. 2019;17:1056–1063. doi:10.1016/j.matpr.2019.06.512.
  • Yang D, Kong XX, Ni YF, et al. Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant. Compos Part A-Appl Sci and Manuf. 2019;124:1–32. doi:10.1016/j.compositesa.2019.05.015. Article Number: 105447.
  • Yang D, Ni YF, Liang YF, et al. Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al2O3-PDA-Ag hybrid nanoparticles. Comp Sci and Technol. 2019;180:86–93. doi:10.1016/j.compscitech.2019.05.019.
  • Song JN, Zhang Y. Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites. Int J Heat and Mass Transf. 2019;141:1049–1055. doi:10.1016/j.ijheatmasstransfer.2019.07.002.
  • Arroyo M, Lopez-Manchado MA, Herrero B. Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polym. 2003;44:2447–2453. doi:10.1016/S0032-3861(03)00090-9.
  • Song S, Zhang Y. Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber. Carbon N Y. 2017;123:158–167. doi:10.1016/j.carbon.2017.07.057.
  • Song JP, Tian KY, Ma LX, et al. The effect of carbon black morphology to the thermal conductivity of natural rubber composites. Int J Heat and Mass Transf. 2019;137:184–191. doi:10.1016/j.ijheatmasstransfer.2019.03.078.
  • Song JP, He Y, Ma LX. Study on thermal conductivity of composites of rubber/CB with good electrical properties. Adv Polym Sci and Eng. 2011;221:466–471. doi:10.4028/www.scientific.net/AMR.221.466.
  • Song JP, Ma LX. Dependence of thermal conductivity of carbon black filled rubber on several factors. Advanced Polymer Processing; Ma,L.,Wang,C.,Yang,W. 2010;87–88:536–541. doi:10.4028/www.scientific.net/AMR.87-88.536.
  • Huang LH, Yang XX, Gao JH. Study on microstructure effect of carbon black particles in filled rubber composites. Int J Polym Sci. 2018;2018:1–11. doi:10.1155/2018/2713291.
  • Song JP, Li XT, Tian KY, et al. Thermal conductivity of natural rubber nanocomposites with hybrid fillers. Chin J Chem Eng. 2019;27:928–934. doi:10.1016/j.cjche.2018.09.019.
  • Song JP, Ma LX. Contribution of carbon black to thermal conductivity of natural rubber. Advanced Polymer Processing III; Yang,W. 2013;561:158–163. doi:10.4028/www.scientific.net/KEM.561.158.
  • Zhang H, Zhang ZY, Zhao GZ, et al. Influence of carbon black with different concentration on dynamic properties and heat buildup of semi-efficient natural rubber composites. Micro Nano Lett. 2016;11:402–406. doi:10.1049/mnl.2016.0004.
  • Song YH, Zeng LB, Zheng Q. Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica*. Chin J Polym Sci. 2017;35:1436–1446. doi:10.1007/s10118-017-1987-5.
  • Szadkowski B, Marzec A, Zaborski M. Use of carbon black as a reinforcing nano-filler in conductivity reversible elastomer composites. Polym Test. 2020;81:1–32. doi:10.1016/j.polymertesting.2019.106222. Article Number: 106222.
  • Glovino M, Buenning E, Jimenez A, et al. Polymer grafted nanoparticle viscosity modifiers. Macromol Chem and Phys. 2019;220:1–7. doi:10.1002/macp.201800543. Article Number: 1800543.
  • Su J, Zhang J. Improvement of electrical properties and thermal conductivity of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3) by carbon blacks and carbon fibers. J Mater Sci Mater in Electron. 2017;28:5250–5261. doi:10.1007/s10854-016-6182-x.
  • Huang JC. Carbon black filled conducting polymers and polymer blends. Adv in Polym Technol. 2002;21:299–313. doi:10.1002/adv.10025.
  • Sardar PS, Maity A, Ghosh S, et al. A conducting nanocomposite of polystyrene with acetylene black. Polym J. 2009;41:784–786. doi:10.1295/polymj.PJ2008328.
  • Maity A, Biswas M. Preparation and some properties of a nanocomposite of polyacrylonitrile with acetylene black. Polym J. 2004;36:812–816. doi:10.1295/polymj.36.812.
  • Zhang J, Chen F, Zhao Y. Improving elasticity of conductive silicone rubber by hollow carbon black. Chem Res in Chin Univ. 2019;35:1124–1132. doi:10.1007/s40242-019-9057-x.
  • Savetlana S, Zulhendri S, Sukmana I, et al. The effect of carbon black loading and structure on tensile property of natural rubber composite. International Conference and Exhibition on Innovation in Polymer Science and Technology (IPST), Medan, INDONESIA, NOV 07–10, 2016; Yudianti, R, Azuma, J. doi:10.1088/1757-899X/223/1/012009.
  • Cha JH, Shin GJ, Kang MJ, et al. A study on the effect of electron acceptor-donor interactions on the mechanical and interfacial properties of carbon black/natural rubber composites. Compos B Eng. 2018;136:143–148. doi:10.1016/j.compositesb.2017.10.003.
  • Song JP. Percolation phenomenon in thermal conductivity of carbon black filled rubber and morphology. Advanced Materials Research; Jiao, S.,Jiang, ZY.,Bu, JL. 2011;146-147:575–580. doi:10.4028/www.scientific.net/AMR.146-147.575.
  • Chawla K, Chauhan APS. Influence of carbon fillers on the thermal conductivity of Poly (methyl methacrylate)/carbon composites. AIP Conference Proceedings; Sharma, NN., Gaol, FL., Akhtar, J; 2016, 1724. doi:10.1063/1.4945169.
  • Dashora P. A study of variation of thermal conductivity of elastomers with temperature. Phys Scripta. 1994;49:611–614. doi:10.1088/0031-8949/49/5/019.
  • Bhowmick T, Pattanayak S. Thermal conductivity, heat capacity and diffusivity of rubbers from 60 to 300 K. Cryogenics. 1990;30:116–121. doi:10.1016/0011-2275(90)90256-C.
  • Saxena NS, Pradeep P, Mathew G, et al. Thermal conductivity of styrene butadiene rubber compounds with natural rubber prophylactics waste as filler. Eur Polym J. 1999;35:1687–1693. doi:10.1016/S0014-3057(98)00247-X.
  • Kerschbaumer RC, Stieger S, Gschwandl M, et al. Comparison of steady-state and transient thermal conductivity testing methods using different industrial rubber compounds. Polym Test. 2019;80:1–8. doi:10.1016/j.polymertesting.2019.106121. Article Number: 106121.
  • Gomi H, Yoshino T. Resistivity, seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature. Phys Rev B. 2019;100:1–9. doi:10.1103/PhysRevB.100.214302. Article Number: 214302.
  • Messaadi C, Ghrib T, Ghrib M, et al. Investigation of the percentage and the compacting pressure effect on the structural, optical and thermal properties of alumina-zeolite mixture. Results in Phys. 2018;8:422–428. doi:10.1016/j.rinp.2017.12.048.
  • Zhang RZ, Dou RF, Wen Z, et al. Effects of pressure and temperature on the effective thermal conductivity of oriented silicon steel iron core under atmospheric condition. Int J Heat and Mass Transf. 2018;125:780–787. doi:10.1016/j.ijheatmasstransfer.2018.04.114.
  • Hands D. Thermal transport properties of polymers. Rubber Chem and Technol. 1977;50:480–522.
  • Szadkowski B, Marzec A, Zaborski M. Effect of different carbon fillers on the properties of nitrile rubber composites. Compos Interfaces. 2019;26:729–750. doi:10.1080/09276440.2018.1534474.
  • Rishi K, Narayanan V, Beaucage G, et al. A thermal model to describe kinetic dispersion in rubber nanocomposites: The effect of mixing time on dispersion. Polymer. 2019;175:272–282. doi:10.1016/j.polymer.2019.03.044.
  • Fabry F, Fulcheri L. Synthesis of carbon blacks and fullerenes from carbonaceous wastes by 3-phase Ac thermal plasma. 6th international conference on engineering for waste and biomass valorisation- May 23-26, 2016 albi, fransa.
  • Xu H, Gong LX, Wang X, et al. Influence of processing conditions on dispersion, electrical and mechanical properties of graphene-filled-silicone rubber composites. Compos Part A-Appl S. 2016;91:53–64. doi:10.1016/j.compositesa.2016.09.011.
  • Hadi NHNA, Ismail H, Abdullah MK, et al. Influence of matrix viscosity on the dynamic mechanical performance of magnetorheological elastomers. J Appl Polym Sci. 2020;137:1–11. doi:10.1002/app.48492. Article Number: 48492
  • Li YT, Liu WJ, Shen FX, et al. Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: A comparative study. Compos Part B-Eng. 2022;238:1–11. doi:10.1016/j.compositesb.2022.109907.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.