110
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Animal models of amyotrophic lateral sclerosis

&
Pages 301-312 | Published online: 10 Jul 2009

  • Ludolph AC. Animal models for motor neuron diseases: research directions. Neurology 1996; 47 (Suppl 4): S228-S232.
  • Piero AP, Mitsumoto H. Animal models of ALS. Clin Neurosci 1996; 3: 375-385.
  • Price DL, Cleveland DW, Koliatsos VE. Motor neuron disease and animal models. Neurobiol Dis 1994; 1: 3-11.
  • Sivellis Smitt P, De Jong JMBV. Animal models of amyotrophic lateral sclerosis and the spinal muscular atrophies. J Neurol Sci 1989; 91: 213-258.
  • Strong MJ, Garruto RM. Experimental paradigms of motor neuron degeneration. In: Woodruff ML, Nonneman AJ, eds. Toxin-induced models of neurological disorders. New York: Plenum Press, 1994: 39-88.
  • Okado N, Oppenheim RW. Cell death of motoneurons in the chick embryo spinal cord: the loss of motoneurons following removal of afferent inputs. J Neurosci 1984; 4: 1639-1652.
  • Oppenheim RW, Qin-Wei Y, Prevette D, Yan Q. Brain derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 1992; 360: 755-757.
  • Sendtner M, Hotmann B, Kolbeck R, et al. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 1992; 360: 757-759.
  • Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 1990; 345: 440-441.
  • Yan Q, Elliott J, Snider WD. Brain-derived growth factor rescues spinal motoneurons from axotomy induced cell death. Nature 1992; 360: 753-755.
  • Engelhardt J, Joo F. An immune-mediated guinea pig model for lower motor neuron disease. J Neuroimmunol 1986; 12: 279-290.
  • Engelhardt JI, Appel SH, Killian JM. Experimental autoimmune motoneuron disease. Ann Neurol 1989; 26: 368-376.
  • Smith RC, Engelhardt JI, Tatji J, Appel SH. Experimental immune-mediated motor neuron disease: models for human ALS. Brain Res Bull 1993; 30: 373-380.
  • Chou SM, Hartman HA. Axonal lesions and waltzing syndrome after IDPN administration in rats. With a concept -'Axotasis'. Ada Neuropathol 1964; 3: 428-450.
  • Griffin JW, Hoffman PN, Clark AW, et al. Slow axonal transport of neurofilament proteins: impairment by ß,ß'-iminodiproprionitrile administration. Science 1978; 202: 633-635.
  • Clark AW, Griffin JW, Price DL The axonal pathology in chronic IDPN intoxication. J Neuropathol Exp Neurol 1980; 39: 42-55.
  • Spencer PS, Nunn PB, Hugon J, et al. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitotoxin. Science 1987; 237: 517-522.
  • Nunn PB, Seelig M, Spencer PS. Stereospecific acute neuronotoxidty of 'uncommon' plant amino adds linked to human motor system disease. Brain Res 1987; 410: 375-379.
  • Ross SM, Seelig M, Spencer PS. Specific antagonism of exdtotoxic action of 'uncommon' amino adds assayed in organotypic mouse cortical cultures. Brain Res 1987; 425: 120-127.
  • Weiss JH, Choi DW. ß-N-methylamino-L-alanine neurotoxidty: requirement for bicarbonate as a cofactor. Science 1988; 241: 973-975.
  • Smith SE, Meldrum BS. Receptor site specificity for the acute effects of beta-N-methylaminoalanine in mice. Eur J Pharmacol 1990; 187: 131-134.
  • Seawright AA, Brown AW, Nolan CC, Cavanagh JB. Selective degeneration of cerebellar cortical neurons caused by cycad neurotoxin, L-ß-methylaminoalanine (L-BMAA), in rats. Neuropathol Appl Neurobiol 1990; 16: 153-169.
  • Duncan MW, Steele JC, Kopin IJ, Markey SP. 2-Amino3-(methylamino)-propionic acid (BMAA) in cycad flour, an unlikely cause of amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Neurology 1990; 40: 767-772.
  • Hirono I. Carcinogenicity and neurotoxicity of cycasin with special reference to species differences. Fed Proc 1972; 31: 1493-1497.
  • Jones MM, Yang M, Mickelsen O. Effects of methylazoxymethanol glucoside and methylazoxymethanol acetate on the cerebellum of the postnatal Swiss albino mouse. Fed Proc 1972; 31: 1508-1511.
  • Spencer PS, Ludolph A, Dwivedi MP, et al. Lathyrism: evidence for role of the neuroexcitatory amino acid BOAA. Lancet 1986; ii: 1066-1070.
  • Pearson S, Nunn PB. The neurolathyrogen, ß-N-oxalyl-L-a,ß-diaminopropionic acid, is a potent agonist at 'glutamate preferring' receptors in frog spinal cord. Brain Res 1981; 206: 178-182.
  • Rao SLN, Sarma PS, Mani KS, et al. Experimental neurolathyrism in monkeys. Nature 1967; 214: 610-611.
  • Hugon J, Ludolph A, Roy DN, et al. Studies on the aetiology and pathogenesis of motor neuron diseases. II. Clinical and electrophysiologic features of pyramidal dysfunction in macaques fed Lathyrus sativus and IDPN. Neurology 1988; 38: 435-442.
  • Pisharodi M, Nauta HJ. An animal model for neuronspecific cord lesions by the microinjection of N-methylaspartate, kainic acid and quisqualic acid. Appl Neurophysiol 1985; 48: 226-233.
  • Hugon J, Vallat JM, Spencer PS, et al. Kainic acid induces early and delayed degenerative neuronal changes in rat spinal cord. Neurosci Lett 1989; 104: 258-262.
  • Hugon J, Vallat JM. Abnormal distribution of phosphorylated neurofilaments in neuronal degeneration induced by kainic acid. Neurosci Lett 1990; 119: 45-48.
  • Ikonomidou C, Qin Y, Labruyere J, Olney JW. Motor neuron degeneration induced by excitotoxin agonists has features in common with those seen in the SODl transgenic mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neural 1996; 55: 211-224.
  • DeBoni U, Otvos A, Scott JW, Crapper DR. Neurofibrillary degeneration induced by systemic aluminium. Acta Neuropathol 1976; 35: 285-294.
  • Wisniewski HM, Sturman JA, Shek JW. Chronic model of neurofibrillary changes induced in mature rabbits by metallic aluminium. Neurobiol Aging 1982; 3:11-22.
  • Garruto RM, Shankar SK, Yanagihara R, et al. Low-calcium, high-aluminium diet-induced motor neuron pathology in cynomolgus monkeys. Acta Neuropathol (Berlin) 1989; 78: 210-219.
  • Strong MJ, Garruto RM. Chronic aluminium-induced motor neuron degeneration: clinical, neuropathological and molecular biological aspects. Can J Neurol Sci 1991; 18: 428-431.
  • Strong MJ, Wolff AV, Wakayama I, Garruto RM. Aluminium-induced chronic myelopathy in rabbits. Neurotoxicology 1991; 12: 9-22.
  • Troncoso JC, Price DL, Griffin JW, Parhad IM. Neurofibrillary axonal pathology in aluminium intoxication. Ann Neurol 1982; 12: 278-283.
  • Messer A, Flaherty L Autosomal dominant inheritance in a late-onset motor neuron disease in the mouse. J Neurogenet 1986; 3: 345-355.
  • Messer A, Plummer J, Maskin P, et al. Mapping of the lateonset motor neuron degeneration (Mnd) gene. Genomics 1992; 18: 797-802.
  • Messer A, Strominger NL, Mazurkiewicz JE. Histopathology of the late-onset motor neuron degeneration (Mnd) mutant in the mouse. J Neurogenet 1987; 4: 201-213.
  • Faust JR, Rodman JS, Daniel PF, et al. Two related proteolipids and dolichol-linked oligosaccharides accumulate in motor neuron degeneration mice (mnd/mnd), a model for neuronal ceroid lipofuscinosis. J Biol Chem 1994; 269:10150-10155.
  • Pardo CA, Rabin BA, Palmer DN, et al. Accumulation of the adenosine triphosphate synthase subunit c in the mnd mutant mouse A model for neuronal ceroid lipofuscinosis. Am J Pathol 1993; 144: 829-835.
  • Callahan LM, Wylen EL, Messer A, Mazurkiewicz JE. Neurofilament distribution is altered in the Mnd (motor neuron degeneration) mouse J Neuropathol Exp Neurol 1991; 50: 491-504.
  • Mazurkiewicz JE. Ubiquitin deposits are present in spinal motoneurons in all stages of the disease in the motor neuron degeneration (mnd) mutant of the mouse. Neuro-Sci Lett 1991; 128: 182-186.
  • Bronson RT, Lake BD, Cook S, et al. Motor neuron degeneration of mice is a model of neuronal ceroid lipofuscinosis (Batten's Disease). Ann Neurol 1993; 33: 381-385.
  • Battaglioli C, Martin DL, Plummer J, Messer A. Synaptosomal glutamate uptake declines progressively in the spinal cord of a mutant mouse with motor neuron disease. J Neurochem 1993; 60:1567-1569.
  • Boyce S, Webb JK, Carlson E, et al. Onset and progression of motor deficits in motor neuron degeneration (Mnd) mice are unaltered by the glycine/NMDA receptor antagonist L-701,324 or the MAO-B inhibitor R(-)deprenyl. Exp Neurol 1999; 155: 49-58.
  • Winter CG, Saotome Y, Saotome I, Hirsh D. CNTF overproduction hastens onset of symptoms in motor neuron degeneration (mnd) mice. J Neurobiol 1996; 31: 370-378.
  • Kaupmann K, Simon-Chazottes D, Guénet JL, Jockush H. Wobbler, a mutation affecting motoneuron survival and gonadal function in the mouse, maps to proximal chromosome 11. Genomics 1992; 13: 39-43.
  • Duchen LW, Strich SJ. An hereditary motor neuron disease with progressive denervation of muscle in the mouse: the mutant 'wobbler'. J Neurol Neurosurg Psychiat 1968; 31: 535-542.
  • Bird MT, Shuttleworth E, Doestner A, Reinglass J. The wobbler mouse mutant an animal model of hereditary motor system disease. Acta Neuropathol (Berlin) 1971; 92: 789-804.
  • Mitsumoto H, Bradley WC. Murine motor neuron disease (the Wobbler mouse): degeneration and regeneration of the lower motor neuron. Brain 1982; 105: 811-834.
  • LaVail JH, Koo EH, Dekker NP. Motoneuron loss in the abducens nucleus of wobbler mice. Brain Res 1988; 463: 78-89.
  • Ma W, Vacca-Galloway LL. Reduced branching and length of dendrites detected in cervical spinal motoneurons of the wobbler mouse, a model of inherited motoneuron disease. J Comp Neurol 1991; 311: 210-222.
  • Hantaz-Ambroise D, Blondet D, Murawsky M, et al. Abnormal astrocyte differentiation and defective cellular interactions in wobbler mouse spinal cord. J Neurocytol 1994; 23: 179-192.
  • Murakami T, Mastaglia FL Bradley WC. Reduced protein synthesis in spinal anterior horn neurons in Wobbler mouse mutant Muscle Nerve 1981; 4: 407-412.
  • Pioro EP, Wang Y, Moore JK, et al. Neuronal pathology in the wobbler mouse brain revealed by in vivo proton magnetic resonance spectroscopy and immunocytochemistry. NeuroReport 1998; 9: 3041-3046.
  • Krieger C, Perry TL, Hansen S, Mitsumoto H. The wobbler mouse: amino acid contents in brain and spinal cord. Brain Res 1991; 551: 142-144.
  • Tomiyama M, Kannari K, Nunomura J, et al. Quantitative autoradiographic distribution of glutamate receptors in the cervical segment of the spinal cord of the wobbler mouse. Brain Res 1994; 650: 353-357.
  • Leestma JE, Sepsenwol S. Sperm tail axoneme alterations in the Wobbler mouse. J Reprod Fertil 1980; 58: 267-270.
  • Hantai D, Akkaboune M, Lagord C, et al. Beneficial effects of insulin-like growth factor-I in wobbler mouse motoneurone disease. J Neurol Sei 1995; 129 (Suppl): 122-126.
  • Mitsumoto H, Ikeda K, Klinkosz B, et al. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 1994; 265: 1107-1110.
  • Henderson JT, Javaheri M, Kopko S, Roder JC. Reduction of lower motor neuron degeneration in wobbler mice by N-acetyl-L-cysteine. J Neurosci 1996; 16: 7574-7582.
  • Krieger C, Perry TK, Hansen S, et al. Excitatory amino acid receptor antagonist in murine motoneuron disease (the wobbler mouse). Can J Neurol Sei 1992; 19: 462-465.
  • Schultz LD, Sweet HO, Davisson MT, Coman DR. "Wasted", a new mutant of the mouse with abnormalities characteristic of ataxia telangjectasia. Nature 1982; 297: 402-404.
  • Chambers DM, Peters J, Abbott CM. The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor Ia, encoded by the Eefla2 gene. Proc Natl Acad Sci USA 1998; 95: 4463-4468.
  • Lutsep HL, Rodriguez M. Ultrastructural, morphometric and immunocytochemical study of anterior horn cells in mice with 'wasted' mutation. J Neuropathol Exp Neurol 1989; 48: 519-533.
  • Kaiserlian D, Savino W, Uriel J, et al. The wasted mutant mouse. II. Immunological abnormalities in a mouse described as a model of ataxia-telangiectasia. Clin Exp Immunol 1986; 63: 562-569.
  • Libertin CR, Ling-Indeck L, Padilla M, Woloschak CE. Cytokine and T-cell subset abnormalities in immunodefiaent wasted mice. MoI Immunol 1994; 31: 753-759.
  • Brunialti ALB, Poirier C, Schmalbruch H, Guénet JL. The mouse mutation progressive motor neuropathy maps to chromosome 13. Genomics 1995; 29:131-135.
  • Schmalbruch H, Skovgaad Jensen HJ, Bjerg B, et al. A new mouse mutant with progressive motor neuropathy. J Neuropathol Exp Neurol 1991; 50: 192-204.
  • Kennel PF, Fonteneau P, Martin E, et al. Electromyographical and motor performance studies in the pmn mouse model of neurodegenerative disease. Neurobiol Dis 1996; 3: 137-147.
  • Sendtner M, Schmalbruch H, Stöckli KA, et al. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 1992; 358: 502-504.
  • Haase G, Kennel P, Pettmann B, et al. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nature Med 1998; 3: 429-436.
  • Sagot T, Tan SA, Hammang JP, et al. GDNF slows loss of motoneurones but not axonal degeneration or premature death of pmn mice. J Neurosci 1996; 16: 2335-2341.
  • Kennel P, Revah F, Bohme G, et al. Riluzole prolongs survival and delays muscle strength deterioration in mice with progressive motor neuronopathy (pmn). J Neurol Sei 2000; 180: 66-67.
  • Duong F, Founder J, Keane PE, et al. The effect of the non-peptide neurotrophic compound SR 57746A on the progression of the disease state of the pmn mouse. Br J Pharmacol 1998; 124: 811-817.
  • Larrodé Pellicer P, Hernando de la Bárcena I. ELA experimental. Modelos experimentales. In: Mora Pardina JS, ed. Esclerosis lateral amiotrófica. Una enfermedad tratable. Barcelona: Prous Science, 1999: 333-351.
  • Ikeda K, Kinoshita M, Tagaya N, et al. Coadministration of interleukin-6 (IL-6) and soluble IL-6 receptor delays progression of wobbler mouse motor neuron disease. Brain Res 1996; 726: 91-97.
  • Ikeda K, Iwasaki Y, Tagaya N, et al. Neuroprotective effect of basic fibroblast growth factor on wobbler mouse motor neuron disease. Neurol Res 1995; 17: 455-498.
  • Ikeda K, Iwasaki Y, Kinoshita M. Neuronal nitric oxide synthase inhibitor, 7-nitroxyindole, delays motor dysfunction and spinal motoneuron degeneration in the wobbler mouse. J Neurol Sei 1998; 160: 9-15.
  • Abe K, Morita S, Kikuchi T, Itoyama Y. Protective effect of a novel free radical scavenger, OPC-14117, on wobbler mouse motor neuron disease. J Neurol Sei 1997; 48: 63-70.
  • Ikeda K, Iwasaki Y, Kinoshita M. JTP-2942, a novel thyrotropin-releasing hormone analogue, protects against spinal motor neuron degeneration in the wobbler mouse. Neurosci Lett 1998; 250: 9-12.
  • Gonzalez-Deniselle MC, Gonzalez SL, Lima AE, et al. The 21-aminosteroid U-74389F attenuates hyperexpression of GAP-43 and NADPH-diaphorase in the spinal cord of wobbler mouse, a model for amyotrophic lateral sclerosis. Neurochem Res 1999; 24: 1-8.
  • Sagot Y, Dubois-Dauphin M, Tan SA, et al. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 1995; 15: 7727-7733.
  • Lorentz MD, Cork LC, Griffin JW, et al. Hereditary spinal muscular atrophy in Brittany spaniels: clinical manifestations. J Am Vet Med Assoc 1979; 175: 833-839.
  • Cork LC, Griffin JW, Munnell JF, et al. Hereditary canine spinal muscular atrophy. J Neuropathol Exp Neurol 1979; 38: 209-221.
  • Griffin JW, Cork LC, Adams RJ, Price DL Axonal transport in hereditary canine spinal muscular atrophy. J Neuropathol Exp Neurol 1982; 41: 370.
  • Cork LC, Griffin JW, Choy C, et al. Pathology of motor neurons in accelerated hereditary canine spinal muscular atrophy. Lab Invest 1982; 46: 88-99.
  • Sack GH, Cork LC, Morris JM, et al. Autosomal dominant inheritance of hereditary canine spinal muscular atrophy. Ann Neurol 1984; 15: 369-373.
  • Cork LC, Griffin JW, Price DL, Sack GH. Hereditary canine spinal muscular atrophy: canine motor neuron disease. Can J Vet Res 1990; 54: 77-82.
  • Cork LC. Hereditary canine spinal muscular atrophy: an animal model of neuron disease. Can J Neurol Sci 1991; 18: 432-434.
  • Cork LC, Struble RG, Gold BG, et al. Changes in size of motor axons in hereditary canine spinal muscular atrophy. Lab Invest 1989; 61: 333-342.
  • Cummings JF, DeLahunta A, George C, et al. Equine motorneuron disease; a preliminary report Cornell Vet 1990; 80: 357-379.
  • Cummings JF, DeLahunta A, Summers BA, et al. Eosinophilic cytoplasmic inclusions in sporadic equine motor neuron disease: an electron microscopic study. Acta Neuropathol 1993; 85: 291-297.
  • Mohammed HO, Cummings JF, Divers TJ, et al. Risk factors associated with equine motor neuron disease: a possible model for human MND. Neurology 1993; 43: 966-971.
  • Brown JH. Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice. Cell 1995; 80: 687-692.
  • Bruijn LI, Cleveland DW. Mechanisms of selective motor neuron death in ALS: insights from transgenic mouse models of motor neuron disease. Neuropathol Appl Neurobiol 1996; 22: 373-387.
  • Cleveland DW, Bruijn LI, Wong PC, et al. Mechanisms of selective motor neuron death in transgenic mouse models of motor neuron disease. Neurology 1996; 47 (Suppl 2): S54-S62.
  • Lee MK, Borchelt DR, Wong PC, et al. Transgenic models of neurodegenerative diseases. Curr Opin Neurobiol 1996; 6: 651-660.
  • Borchelt DR, Wong PC, Sisodia SS, Price DL Transgenic mouse models of Alzheimer's disease and amyotrophic lateral sclerosis. Brain Pathol 1998; 8: 735-757.
  • Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu, Zn Superoxide dismutase mutation. Science 1994; 264: 1772-1775.
  • Wong PC, Pardo CA, Borchelt DR, et al. An adverse property of a familial ALS-linked SODl mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14: 1105-1106.
  • Ripps ME, Huntley GW, Hof PR, et al. Transgenic mice expressing an altered murine Superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995; 92: 659-693.
  • Bruijn LI, Becher MW, Lee MK, et al. ALS-linked SODl mutant G85R mediated damage to astrocytes and promotes rapidly progressive disease with SOD1-containing indusions. Neuron 1997; 18: 327-388.
  • Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn Superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996; 13: 43-47.
  • Baméoud P, Lolivier J, Sanger DJ, et al. Quantitative motor assessment in FALS mice: a longitudinal study. NeuroReport 1997; 8: 2861-2865.
  • Chiu AY, Zhai P, DaI Canto MC, et al. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 1995; 6: 349-362.
  • Gurney ME. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neural Sd 1997; 152 (Suppl 1): S67-S73.
  • Kennel PF, Finiels F, Revah F, Mallet J. Neuromuscular function impairment is not caused by motor neurone loss in FALS mice: an electromyographic study. NeuroReport 1996; 7: 1427-1431.
  • Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SODl. J Neurosci 1998; 18: 3241-3250.
  • Del Canto MC, Gurney ME. The development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 1994; 145: 1271-1279.
  • Tu PH, Raju P, Robinson KA, et al. Transgenic mice carrying a human mutant Superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sei USA 1996; 93: 3155-3160.
  • Ferrante RJ, Shinobu LA, Schulz JB. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc Superoxide dismutase mutation. Ann Neurol 1997; 42: 326-334.
  • Bruijn LI, Beal MF, Becher MW, et al. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked Superoxide dismutase 1 mutant Proc Natl Acad Sd USA 1997; 94: 7606-7611.
  • Bogdanov MB, Ramos LE, Xu X, Beal MF. Elevated 'hydroxyl radical' generation in vivo in an animal model of amyotrophic lateral sclerosis. J Neurochem 1998; 71: 1321-1324.
  • Canton T, Pratt J, Stutzmann JM, et al. Glutamate uptake is decreased tardively in the spinal cord of FALS mice. NeuroReport 1998; 30: 775-778.
  • Collard JF, Côté F, Julien JP. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 1995; 375: 61-64.
  • Zhang B, Ti PH, Abtahian F, et al. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SODl with a G93A mutation. J Cell Biol 1997; 5:1307-1315.
  • Hall FX), Oostveen JA, Gurney ME· Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 1998; 23: 249-256.
  • Kostic V, Gurney ME, Deng HX, et al. Midbrain dopaminergic neuronal degeneration in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 1997; 41: 497-504.
  • Pasinelli P, Borchelt DR, Houseweart MK, et al. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc Superoxide dismutase. Proc Natl Acad Sci USA 1998; 26: 15763-15768.
  • Ghadge GD, Lee JP, Bindokas W, et al. Mutant Superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J Neurosci 1997; 17: 8756-8766.
  • Rabizadeh S, Gralla EB, Borchelt DR, et al. Mutations associated with amyotrophic lateral sclerosis convert Superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sci USA 1995; 92: 3024-3028.
  • Durham HD, Roy J, Dong L, Figlewicz DA. Aggregation of mutant Cu/Zn Superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 1997; 56: 523-530.
  • Gurney ME, Cutting FB, Zhai P, et al. Benefit of vitamin E, riluzole and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 147-157.
  • Barnéoud P, Curet O. Beneficial effects of lysine acetylsalicyiate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Exp Neurol 1999; 155: 243-251.
  • Klivenyi P, Ferrante RJ, Matthews RT, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med 1999; 5: 347-350.
  • Gurney ME, Fleck TJ, Himes CS, Hall FX). Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 1998; 50: 62-66.
  • Facdiinetti F, Sasaki M, Cutting FB, et al. Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience 1999; 90: 1483-1492.
  • Mohajeri MH, Figlewicz DA, Botin MC. Intramuscular grafts of myoblasts genetically modified to secrete Glial Cell-Line-Derived Neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum Gene Ther 1999; 10: 1853-1866.
  • Hottinger AF, Fine EG, Gurney ME, et al. The copper chelator D-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur J Neurosci 1997; 9:1548-1551.
  • Nagano S, Ogawa Y, Yanagihara T, Sakoda S. Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci Lett 1999; 265: 159-162.
  • Dugan LL, Turetsky DM Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sei USA 1997; 94: 9434-9439.
  • Kostic V, Jackson-Lewis V, de Bilbao F, et al. bcl-2 prolongs life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997; 277: 559-562.
  • Frielander RM, Brown RH, Gagliardini V, et al. Inhibition of ICE slows ALS in mice. Nature 1997; 388: 31.
  • Ii M, Ona VO, Guegan C, et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 2000; 288: 335-339.
  • Julien JP. Neurofilament functions in health and disease. Curr Opin Neurobiol 1999; 9: 554-560.
  • Leigh PN, Swash M. Cytoskeletal pathology in motor neuron diseases. Adv Neurol 1991; 56:115-124.
  • Figlewicz DA, Krizus A, Martinoli MG, et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum MoI Genet 1994; 3: 1757-1761.
  • Al-Chalabi A, Andersen PM Nilsson P, et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 1999; 8:157-164.
  • Beaulieu JM, Nguyen MD, Julien JP. Late onset death of motor neurons in mice over-expressing wild-type peripherin. J Cell Biol 1999; 147: 531-544.
  • Côté F, Collard JF, Julien JP. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 1993; 73: 35-46.
  • Meier J, Couillard-Després S, Jacomy H, et al. Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice. J Neuropathol Exp Neurol 1999; 58: 1099-1110.
  • Couillard-Després S. Zhu Q, Wong PC, et al. Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant Superoxide dismutase. Proc Natl Acad Sci USA 1998; 16: 9626-9630.
  • Xu Z, Cork LC, Griffin JW, et al. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 1993; 73: 23-33.
  • Williamson TI, Bruijn LI, Zhu Q, et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked Superoxide dismutase 1 mutant Proc Natl Acad Sci USA 1998; 16: 9631-9636.
  • Lee MK, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 1994; 13: 975-988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.