46
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Cyclin-dependent kinase-5 (CDK5) and amyotrophic lateral sclerosis

Pages 319-327 | Published online: 10 Jul 2009

  • Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62.
  • McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244: 6049-6055.
  • Figlewicz DA, Krizus A, Martinoli MC. Variants of the human neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum MoI Genet 1994; 3: 1757-1761.
  • Rooke K, Figlewicz DA, Han F, Rouleau CA. Analysis of the KSP repeat of the neurofilament heavy subunit in familial amyotrophic lateral sclerosis. Ann Neurol 1996; 46: 789-790.
  • Tomkins J, Usher P, Slade JY, et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 1998; 9: 3967-3970.
  • AlChalabi A, Andersen PM, Nilsson P, et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum MoI Genet 1999; 8:157-164.
  • Cajal SR Embryogenesis of neurofibrils. Trab Inst Cajal Invest Biol 1903; 2: 219-225.
  • Lee MK, Cleveland DW. Neuronal intermediate filaments. AnnRevNeurosci 1996; 19:187-217.
  • Shaw C. Neurofilament proteins. In: Burgoyne, RD, editor. The Neuronal Cytoskeleton. New York: Wiley-Liss, 1991: 85-214.
  • Garden MJ, Schlaepfer WW, Lee VM-Y. The structure, biochemical properties and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem 1985; 260: 9805-9817.
  • Lee VM-Y, Otvos L, Garden MJ, Hollosi M, Dietzschold B, Lazzarini RA. Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sd USA 1988; 85: 1998-2002.
  • Elhanany E, Jaffe H, Link WT, Sheeley DM, Gainer H, Pant HC. Identification of endogenously phosphorylated KSP sites in the high-molecular weight rat neurofilament protein. J Neurochem 1994; 63: 2324-2335.
  • Pant HC, Veeranna, Arwin ND. Neurofilament phosphorylation. Biochem Cell Biol 1995; 73: 575-592.
  • Skalli O, Chou Y-H, Goldman RD. Intermediate filaments: not so tough after all. Trends Cell Biol 1992; 2: 308-312.
  • Guan RJ, Khatra BS, Cohlberg JA. Phosphorylation of bovine neurofilament proteins by protein kinase FA (glyoogen synthase kinase-3). J Biol Chem 1991; 266: 8262-8267.
  • Guidato S, Tsai LH, Woodgett J, Miller CCJ. Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cylin dependent kinase-5. J Neurochem 1996; 66:1698-1706.
  • Hisinaga S, Kusubata M, Okumura E, Kishimoto T. Phosphorylation of neurofilament H subunit at the tail domain by cdc2 kinase dissociates the association to microtubules. J Biol Chem 1991; 266: 21798-21803.
  • Hisinaga S, Ishiguro K, Uchida T, Okamura E, Okano T, Kishimoto T. Tau protein kinase II has a similar characteristic to cdc2 kinase for phosphorylating neurofilament proteins. J Biol Chem 1993; 268: 15056-15060.
  • Lew J, Winkfein RJ, Paudel HE, Wang JH. Brain prolinedirected kinase is a neurofilament kinase, which displays high sequence homology to p34cdc2. J Biol Chem 1992; 267: 25922-25926.
  • Shetty KT, Link WT, Pant HC. Cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterisation. Proc Nad Acad Sd USA 1993; 90: 6844-6848.
  • Miyasaka H, Okabe S, Ishiguro K, Uchida T, Hirokawa N. Interaction of the tail domain of high molecular weight subunits of neurofilaments with the COOH-terminal region of tubulin and its regulation by tau protein kinase II. J Biol Chem 1993; 268: 22695-22702.
  • Guidato S, Bajaj NPS, Miller CCJ. Cellular phosphorylation of neurofilament heavy-chain by cydin dependent kinase-5 masks the epitope for monoclonal antibody N52. Neurosci Lett 1996; 217: 157-160.
  • Sun D, Leung CL, Liem RKH. Phosphorylation of the high molecular weight neurofilament protein (NF-H) by CDK5 and p35. J Biol Chem 1996; 271: 14245-14251.
  • Bajaj NPS, Miller CCJ. Phosphorylation of neurofilament heavy-chain side-arm fragments by cyclin dependent kinase-5 and glycogen synthase-3a in transfected cells. J Neurochem 1997; 69: 737-743.
  • Veeranna, Arwin ND, Amin ND, Ahn NC, et al. Mitogenactivated protein kinases (Erkl,2) phosphorylate lys-ser-pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci 1998; 18: 4008-4021.
  • Giasson BI, Mushynski WE. Aberrant stress-induced phosphorylation of perikaryal neurofilaments. J Cell Biol 1996; 271: 30404-30409.
  • Giasson BI, Mushynski WE. Study of praline directed protein kinases involved in phosphorylation of the heavy neurofilament subunit J Neurosci 1997; 17: 9466-9472.
  • Pines J. Cydins and cyclin dependent kinases: a biochemical view. Biochem J 1995; 308: 697-711.
  • Pines J. Cyclins and cyclin dependent kinases: themes and variations. Adv Cancer Res 1995; 66: 181-212.
  • Heitz F, Morris MC, Fesquet D, Cavadore J-C, Doree M, Divita C. Interactions of the cyclins and with cyclin dependent kinases: a common interactive mechanism. Biochemistry 1997; 36: 4995-5003.
  • Lees R Cyclin dependent kinase regulation. Curr Opin Cell Biol 1995; 7: 773-780.
  • Xu Z-S, Liu WS, Willard M. Identification of six phosphoryiation sites in the COOH-terminal tail region of the rat neurofilament protein-M. J Biol Chem 1992; 267: 4467-4471.
  • Meyerson M, Enders GH, Wu C-L, et al. A family of cdc2related protein kinases. EMBO J 1992; 11: 2909-2917.
  • Lew J, Baudette, K, Litwin CME, Wang JH. Purification and characterisation of a novel proline-directed kinase from bovine brain. J Biol Chem 1992; 267: 13383-13390.
  • Hellmich MR, Pant HC, Wada E, Battey JF. Neuronal cdc2like kinase: a cdc2-related protein kinase with predominately neuronal expression. Proc Natl Acad Sd USA 1992; 89: 10867-10871.
  • Tsai L-H, Takahashi T, Caviness VS, Harlow R Activity and expression pattern of cyclin dependent kinase-5 in the embryonic mouse nervous system. Development 1993; 119: 1029-1040.
  • Xiong Y, Zhang H, Beach D. D-type cyclins associate with multiple protein-kinases and the DNA-replication and repair factor PCNA. CelI 1992; 71: 505-514.
  • Lew J, Huang QQ, Qi Z, et al. A brain-specific activator of cyclin dependent kinase-5. Nature 1994; 371: 423-426.
  • Tsai L-H, Delalle I, Caviness VS, Chae T, Harlow R p35 is a neural specific regulatory subunit of CDK5. Nature 1994; 371: 419-423.
  • Lew J, Wang JH. Neuronal cdc2-like kinase. Trends Biochem Sd 1995; 20: 33-37.
  • Poon RYC, Lew J, Hunter T. Identification of functional domains in the neuronal CDK5 activator protein. J Biol Chem 1997; 272: 5703-5708.
  • Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai L-H. p35, the neuronal-spedfic activator of cyclin dependent kinase-5 (CDK5) is degraded by the ubiquitin-proteosome pathway. J Biol Chem 1998; 273: 24057-24064.
  • van der Heuvel S, Harlow R Distinct role for cyclin dependent kinases in cell cycle control. Science 1993; 262: 2050-2054.
  • Matsuura I, Wang JH. Demonstration of cyclin dependent kinase inhibitory serine/threonine kinase in bovine thymus. J Biol Chem 1996; 271: 5443-5450.
  • Lee K-Y, Rosales JL, Tang D, Wang JH. Interaction of cyclin dependent kinase-5 (CDKS) and neuronal CDK5 activator in bovine brain. J Biol Chem 1996; 271: 1538-1543.
  • Moorthamer M, Chaudhuri B. Identification of a ribosomal protein L34 as a novel CDK5 inhibitor. Biochem Biophys Res Comm 1999; 255: 631-638.
  • Moorthamer M, Zumstein-Mecker S, Chaudhuri B. DNA binding protein dbpA binds CDK5 and inhibits its activity. FEBS Lett 1999: 446: 343-350.
  • Zheng M, Leung CL, Iiem RKH. Region-specific expression of cyclin dependent kinase-5 (CDK5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J Neurobiol 1998; 35:141-159.
  • Ino H, Ishizuka T, Chiba T, Tatibana M. Expression of CDK5 (PSSALRE kinase), a neural cdc2-related proteinkinase, in the mature and developing mouse central and peripheral nervous systems. Brain Res 1994; 661: 196-206.
  • Matsushita M, Tomizawa K, Lu YFM, et al. Distinct cellular compartment of cyclin dependent kinase-5 (CDK5) and neurone-specific CDK5 activator protein (p35[nCK5a]) in the developing rat cerebellum. Brain Res 1996; 734: 319-322.
  • Nikolic M, Dudek H, Kwon YT, Ramos YFM, Tsai L·H. The CDK5/p35 kinase is essential for neunte outgrowth during neuronal differentiation. Genes Devel 1996; 10: 816-825.
  • Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509-514.
  • Nikolic M, Chou MM, Lu W, Mayer BJ, Tsai L·H. The CDK5/p35 kinase is a neurone specific Rac effector that inhibits Pakl activity. Nature 1998; 395: 194-198.
  • Ohshima T, Ward JM, Huh CC, et al. Targeted disruption of the cyclin dependent kinase-5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sd USA 1996; 93: 11173-11178.
  • Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai L-H. Mice lacking p35, a neuronal specific activator of CDK5, display cortical lamination defects, seizures, and adult lethality. Neuron 1997; 18: 29-42.
  • Philpott A, Porro EB, Kirschner MW, Tsai L-H. The role of cyclin dependent kinase-5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Devel 1997; 11: 1409-1421.
  • Ratner N, Bloom GS, Brady S. A role for cyclin dependent kinase(s) in the modulation of fast anterograde axonal transport effects defined by olomudne and the APC tumour suppresser protein. J Neurosci 1998; 18: 7717-7726.
  • Sudhof TC. The synaptic vesicle cycle: a cascade of proteinprotein interactions. Nature 1995; 375: 645-653.
  • Hanson PI, Heuser JE, Jahn R. Neurotransmitter release four years of SNARE complexes. Curr Opinion Neurobiol 1997; 7: 310-315.
  • Shuang R, Zhang L, Fletcher A, Groblewski GE, Pevsner J, Stuenkel EL. Regulation of munc-18/syntaxin IA interaction by cyclin dependent kinase-5 in nerve endings. J Biol Chem 1998; 273: 4957-4966.
  • Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, Stuenkel EL. Regulation of exocytosis by cyclin dependent kinase-5 via phosphorylation of munc18. J Cell Biol 1999; 274: 4027-4035.
  • Lee K-Y, Qi Z, Yu YP, Wang JH. Neuronal cdc-2 like kinases: neurone-specific forms of CDK5. Int J Biochem Cell Biol 1997; 29: 951-958.
  • Goedert M, Crowther RA, Garner CC. Molecular characteri-sation of microtubule-assodated proteins tau and MAP2. Trends Neurosci 1991; 14: 193-199.
  • Goedert M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci 1993; 16: 460-465.
  • Kobayashi S, Ishiguro K, Omori A, et al. A cdc2-related kinase PSSALRE/CDK5 is homologous with the 30 kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtubules. FEBS Lett 1993; 335: 171-175.
  • Paudel HK, Lew J, AIi Z, Wang JH. Brain proline directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer's paired helical filaments. J Biol Chem 1993; 31: 23512-23518.
  • Morishima-Kawashima M, Hasegawa M, Takio K, et al. Proline directed and non-proline directed phosphorylation of PHF-tau. J Biol Chem 1995; 270: 823-829.
  • Michel G, Mercken M, Murayama M, et al. Characterisation of tau phosphorylation in glycogen synthase kinase-3ß and cyclin dependent kinase-5 activator (p23) transfected cells. Biochim Biophys Acta - Molec Basis Dis 1998; 1380: 177-182.
  • Patrick CN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai L-H. Conversion of p35 to p25 deregulates CDK5 activity and promotes neurodegeneration. Nature 1999; 402: 615-622.
  • Leigh PN, Dodson A, Swash M, Brion J-P, Anderton B. Cytoskeletal abnormalities in motor neurone disease. Brain 1989; 112: 521-535.
  • Hirano A. Cytopathology of amyotrophic lateral sclerosis. In: Rowlan LP, editor. Advances in Neurology: Amyotrophic lateral sclerosis and other motor neurone diseases. New York Raven Press, 1991: 91-101.
  • Xu Z, Cork LC, Griffin JW, Cleveland DW. Involvement of neurofilaments in motor neurone disease. J Cell Sei 1993; 17: 101-108.
  • Wong PC, Pardo CA, Borchelt DR, et al. An adverse property of a familial ALS-linked SODl mutation causes motorneuron disease characterised by vacuolar degeneration of mitochondria. Neuron 1995; 14:1105-1116.
  • Reaume AC, Elliott JL, Hoffman EK, et al. Motor neurones in Cu/Zn Superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet 1996; 13: 43-47.
  • Cote F, Collard JF, Julien JP. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 1993; 73: 35-46.
  • Xu Z, Cork LC, Griffin JW, Cleveland DW. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neurone disease. Cell 1993; 73: 23-33.
  • Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neurone death: implications for the pathogenesis of human motor neurone disease. Neuron 1994; 13: 975-988.
  • Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM-Y. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sd USA 1996; 93: 3155-3160.
  • Williamson TL, Bruijn LI, Zhu Q, et al. Absence of neurofilaments reduces the selective vulnerability of motor neurones and slows disease caused by familial amyotrophic lateral sclerosis-linked Superoxide dismutase 1 mutant Proc Natl Acad USA 1998; 95: 9631-9636.
  • Couillard-Despres S, Zhu Q, Wong PC, Price DL, Cleveland DW, Julien J-P. Protective effect of neurofilament heavy gene over-expression in motor neurone disease induced by mutant Superoxide dismutase. Proc Natl Acad USA 1998; 95: 9626-9630.
  • Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SODl mutants to motor neurones. Nature Neurosci 1999; 2:50-56.
  • Hirokawa N. The crosslinker system between neurofilaments, microtubules and membranous organelles revealed by quick freeze, freeze fracture, deep-etching method. J Cell Biol 1982; 94: 129-142.
  • Hirokawa N, Glicksman MA, Willard MB. Organisation of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 1984; 98: 1523-1536.
  • Julien JP, Cote F, Beaudet L, Sidky M, Flavell D. Sequence and structure of the mouse gene coding for the largest neurofilament subunit Gene 1988; 68: 307-314.
  • Beaudette KN, Lew J, Wang JH. Substrate specificity characterisation of a cdc2-like protein kinase purified from bovine brain. J Biol Chem 1993; 268: 20825-20830.
  • Brion JP, Couck AM. Cortical and brain stem-type Lewy bodies are immunoreactive for cyclin dependent kinase-5. AmJPathol 1995; 147: 1465-1476.
  • Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. Preferential labelling of Alzheimer neurofibrillary tangles with antisera for tau-protein kinase (TPK-I) (glycogen-synthase kinase-3ß) and cyclin dependent kinase-5, a component of TPK-II. Acta Neuropathol 1996; 92: 232-241.
  • Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J. p35(nck5a) and cyclin dependent kinase-5 co-localise in Lewy bodies of brains with Parkinson's disease. Acta Neuropathol 1997; 94: 153-157.
  • Pei J-J, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF. Accumulation of cyclin dependent kinase-5 (CDKS) in neurones with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Res 1998; 797: 267-277.
  • Nakamura S, Kawamoto Y, Nakano S, Ikemoto A, Akiguchi I, Kimura J. Cyclin dependent kinase-5 in Lewy body-like inclusions in anterior horn cells of a patient with sporadic amyotrophic lateral sclerosis. Neurology 1997; 48: 267-270.
  • Bajaj NPS, Al-Sarraj S, Kibble M, Anderson V, Leigh PN, Miller CCJ. CDKS associates with lipofuscin in motor neurones in ALS. Neurosci Lett 1998; 217: 1-4.
  • Bajaj NPS, Al-Sarraj ST, Leigh PN, Anderson V, Miller CCJ. Cyclin dependent kinase-5 (CDKS) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament accumulations in amyotrophic lateral sclerosis (ALS) and is present in affected motor neurones in ALS. Progr Neuro-psychopharmacol Biol Psychiatry 1999; 23: 833-850.
  • Brunk UT, Jone CB, Sohal RS. A novel hypothesis of lipofuscinogenesis and cellular ageing based upon interactions between oxidative stress and autophagocytosis. Mutat Res 1992; 275: 395-403.
  • Tu PH, Gurney ME, Julien J-P, Lee VM-Y, Trojanowski JQ. Oxidative stress, mutant SODl and neurofilament pathology in transgenic mouse models of human motor neurone disease. Lab Invest 1997; 76: 441-456.
  • Greenland LJS, Deckwerth II, Johnson EM. Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 1995; 14: 303-315.
  • Rabizadeh S, Gralla EB, Borchelt DR, et al. Mutations associated with amyotrophic lateral sclerosis convert Superoxide dismutase from an anti-apoptotic gene to a pro-apoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sd USA 1995; 92: 3024-3028.
  • Mu X, He J, Anderson DW, Trojanowski JQ, Springer JE Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurones. Ann Neurol 1996; 40: 379-386.
  • Migheli A, Cavalla P, Piva R, Giordana MT, Schiffer D. bcl-2 protein expression in aged brain and neurodegenerative disease. Neuroreport 1994; 5: 1906-1908.
  • Meikrantz W, Schlegel R. Suppression of apoptosis by dominant-negative mutants of cyclin dependent protein kinases. J Biol Chem 1996; 271: 10205-10209.
  • Ahuja HS, Zhu Y, Zakeri Z. Association of cyclin dependent kinase-5 and its activator p35 with apoptotic cell death. Dev Genet 1997; 21: 258-267.
  • Zhang Q, Ahuja HS, Zakeri ZF, Wolgemuth DJ. Cyclin dependent kinase-5 is associated with apoptotic cell death during development and tissue remodelling. Dev Biol 1997; 183: 222-233.
  • Shirvan A, Ziv I, Zilkha-Falb R, Machlyn T, Barzilai A, Melamed E. Expression of cell cycle-related genes during neuronal apoptosis: is there a distinct pattern? Neurochem Res 1998; 23: 767-777.
  • Bajaj NPS, Leigh PN, Miller CCJ. CDK5 induces apoptosis in cultured mammalian cells and accumulates in lipofuscin in ALS (abstract). J Neural 1998; 245: 347.
  • Lee K-Y, Helbing CC, Choi K-S, Johnston RN, Wang J. Neuronal cdc2-like kinase (Ndk) binds and phosphorylates the retinoblastoma protein. J Biol Chem 1997; 272: 5622-5626.
  • Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323-330.
  • Ross ME Cell division and the nervous system: regulating the cell cycle from neural differentiation to death. Trends Neurosci 1996; 19: 62-68.
  • Herwig S, Strauss M. The retinoblastoma protein: a master regulator of the cell cycle, differentiation and apoptosis. Eur J Biochem 1997; 246: 581-601.
  • Brehm A, Miska EA, McCance DJ, Rad JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391: 597-601.
  • Magnaghi Jaulin L, Groisman R, Naguibneva I, et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 1998; 391: 601-605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.