82
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Superoxide dismutase-1 mutation-related neurotoxicity in familial amyotrophic lateral sclerosis

, , , &
Pages 143-161 | Published online: 10 Jul 2009

  • Shibata N, Kobayashi M, Hirano A, et al. Morphological aspects of Superoxide dismutase-1 mutation in amyotrophic lateral sclerosis and its transgenic mouse model. Acta Histochem Cytochem 1999; 32: 17-30.
  • Lyons IT, Cralla EB, Valentine JS. Biological chemistry of copper-zinc Superoxide dismutase and its link to amyotrophic lateral sclerosis. Metal Ions Biol Systems 1999; 36: 125-177.
  • Hentati A, Bejaoui K, Pericak-Vance MA, et al. Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33-q35. Nat Genet 1994; 7: 425-428.
  • Chance PF, Rabin BA, Ryan SC, et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am J Hum Genet 1998; 62: 633-640.
  • Hentati A, Ouahchi K, Pericak-Vance MA, et al. Linkage of a common locus for recessive amyotrophic lateral sclerosis. Am J Hum Genet 1997; 61 (Suppl):A279.
  • Siddique T, Hong S, Brooks BR, et al. X-linked dominant ALS. Neurology 1998; 51: A310.
  • Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas MoI Biol 1986; 58: 61-97.
  • Wiedau-Pazos M, Goto JJ, Rabizadeh S, et al. Altered reactivity of Superoxide dismutase in familial amyotrophic lateral sclerosis. Science 1996; 271: 515-518.
  • Ischiropoulos H, Zhu L, Chen J, Tsai M, et al. Peroxynitritemediated tyrosine nitration catalyzed by Superoxide dismutase. Arch Biochem Biophys 1992; 298: 431-437.
  • Wang X, Culotta VC, Klee CB. Superoxide dismutase protects calcineurin from inactivation. Nature 1996; 383: 434-437.
  • Bergeron C, Petrunka C, Weyer L Copper/zinc Superoxide dismutase expression in the human central nervous system. AmJPathol 1996; 148: 273-279.
  • Pardo CA, Xu Z, Borchelt DR, Price DL, Sisodia SS, Cleveland DW. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci USA 1995; 92: 954-958.
  • Nakano R, Sato S, Inuzuka T, et al. A novel mutation in Cu/Zn Superoxide dismutase gene in Japanese familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun 1994; 200: 695-703.
  • Deng H-X Hentati A, Tainer JA, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn Superoxide dismutase. Science 1993; 261: 1047-1051.
  • Morita M, Aoki M, Hasegawa T, et al. A novel two-base mutation in the Cu/Zn Superoxide dismutase gene associated with familial amyotrophic lateral sclerosis. Neurosci Lett 1996; 205: 79-82.
  • Hirano M, Fujii J, Nagai Y, et al. A new variant Cu/Zn Superoxide dismutase (Val7?Glu) deduced from lymphocytes mRNA sequences from Japanese patients with familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun 1994; 204: 572-577.
  • Bereznai B, Winkler A, Borasio CD, et al. A novel SODl mutation in an Austrian family with amyotrophic lateral sclerosis. Neuromuscul Disord 1997; 7: 113-116.
  • Andersen PM, Nilsson P, Keränen M-L, et al. Phenotypic heterogeneity in motor neuron disease patients with CuZnsuperoxide dismutase mutations in Scandinavia. Brain 1997; 120: 1723-1737.
  • Deng H-X, Tainer JA, Mitsumoto H, et al. Two novel SODl mutations in patients with familial amyotrophic lateral sclerosis. Hum MoI Genet 1995; 4: 1113-1116.
  • Kawamata J, Shimohama S, Takano S, et al. Novel C16S (CCC-ACC) mutation in the SODl gene in a patient with apparently sporadic young-onset amyotrophic lateral sclerosis. Hum Mut 1997; 9: 356-358.
  • Boukaftane Y, Khoris J, Moulard B, et al. Identification of six novel SODl gene mutations in familial amyotrophic lateral sclerosis. Can J Neurol Sci 1998; 25: 192-196.
  • Jones CT, Swingler RJ, Brock JH. Identification of a novel SODl mutation in an apparently sporadic amyotrophic lateral sclerosis patient and the detection of Ilel 13Thr in three others. Hum MoI Genet 1994; 3: 649-650.
  • Shaw PJ, Tomkins J, Slade JY, et al. CNS tissue Cu/Zn superoxide dismutase (SODl) mutations in motor neuron disease (MND). Neuroreport 1997; 8: 3923-3927.
  • Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62.
  • Ogasawara M, Matsubara Y, Narisawa K, et al. Mild ALS in Japan associated with novel SOD mutation. Nat Genet 1993; 5: 323-324.
  • Enayat ZE, Orrell RW, Claus A, et al. Two novel mutations in the gene for copper zinc Superoxide dismutase in UK families with amyotrophic lateral sclerosis. Hum MoI Genet 1995; 4: 1239-1240.
  • Shaw CE, Enayat ZE, Chioza BA, et al. Mutations in all five exons of SOD-1 may cause ALS. Ann Neurol 1998; 43: 390-394.
  • Aoki M, Abe K Houi K et al. Variance of age at onset in a Japanese family with amyotrophic lateral sclerosis associated with a novel Cu/Zn Superoxide dismutase mutation. Ann Neural 1995; 37: 676-679.
  • Maeda T, Kurahashi K, Matsunaga M, Inoue K, Inoue M. On intra-familial clinical diversities of a familial amyotrophic lateral sclerosis with a point mutation of Cu/Zn Superoxide dismutase (Asn86-Ser). Brain Nerve 1997; 49: 847-851.
  • Andersen PM, Nilsson P, Ala-Hurula V, et al. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet 1995; 10: 61-65.
  • Robberecht W, Aguirre T, van den Bosch L, et al. D90A heterozygosity in the SODl gene is associated with familial and apparently sporadic amyotrophic lateral sclerosis. Neurology 1996; 47: 1336-1339.
  • Elshafey A, Lanyon WC, Connor JM. Identification of a new missense point mutation in exon 4 of the Cu/Zn superoxide dismutase (SOD-I) gene in a family with amyotrophic lateral sclerosis. Hum MoI Genet 1994; 3: 363-364.
  • Esteban J, Rosen DR, Bowling AC, et al. Identification of two novel mutations and a new polymorphism in the gene for Cu/Zn Superoxide dismutase in patients with amyotrophic lateral sclerosis. Hum MoI Genet 1994; 3: 997-998.
  • Kawamata J, Shimohama S, Hasegawa H, et al. Deletion and point mutation in Superoxide dismutase-1 gene in amyotrophic lateral sclerosis. In: Nakano I, Hirano A, eds. Progress and Perspectives in Basic Research and Clinical Application. International Congress Series 1104. Tokyo: Elsevier, 1996: 276-280.
  • Hosler BA, Nicholson GA, Sap PC, et al. Three novel mutations and two variants in the gene for Cu/Zn Superoxide dismutase in familial amyotrophic lateral sclerosis. Neuromuscul Disord 1996; 6: 361-366.
  • Siddique T, Nijhawan D, Hentati A. Familial amyotrophic lateral sclerosis. J Neural Transm 1997; 49 (Suppl): 219-233.
  • Orrell RW, Habgood J, Rudge P, et al. Difficulties in distinguishing sporadic from familial amyotrophic lateral sclerosis. Ann Neural 1996; 39: 810-812.
  • Yulug IG, Katsanis N, de Belleroche J, et al. An improved protocol for the analysis of SODl gene mutations, and a new mutation in exon 4. Hum MoI Genet 1995; 4: 1101-1104.
  • Ikeda M, Abe K, Aoki M, et al. Variable clinical symptoms in familial amyotrophic lateral sclerosis with a novel point mutation in the Cu/Zn Superoxide dismutase gene. Neurology 1995; 45: 2038-2042.
  • Orrell RW, Habgood JJ, Gardiner I, et al. Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for copper-zinc Superoxide dismutase in UK families with amyotrophic lateral sclerosis. Neurology 1997; 48: 746-751.
  • de Belleroche J. Functional and structural correlates of the SOD-1 mutation in UK families with amyotrophic lateral sclerosis (Abstract). In: 6th International Symposium on ALS/MND, Dublin, 1995.
  • Korstrzewa M, Burck-Lehmann U, Müller U. Autosomal dominant amyotrophic lateral sclerosis: a novel mutation in the Cu/Zn Superoxide dismutase-1 gene. Hum MoI Genet 1994; 3: 2261-2262.
  • Sapp PC, Rosen DR, Hosler BA, et al. Identification of three novel mutations in the gene for Cu/Zn Superoxide dismutase in patients with familial amyotrophic lateral sclerosis. Neuromuscul Disord 1995; 5: 353-357.
  • Takehisa Y, Ishizu H, Ujike H, et al. Familial amyotrophic lateral sclerosis with the L126S mutation in the copper/zinc Superoxide dismutase (SODl) gene. Neuropathology 1999; 19 (Suppl)A63.
  • Pramatarova A, Goto J, Nanba E, et al. A two basepair deletion in the SODl gene causes familial amyotrophic lateral sderosis. Hum MoI Genet 1994; 3: 2061-2062.
  • Watanabe M, Aoki M, Abe K, et al. A novel missense point mutation (S134N) of the Cu/Zn Superoxide dismutase gene in a patient with familial motor neuron disease. Hum Mut 1997; 9: 69-71.
  • Pramatarova A, Figlewicz DA, Krizus A, et al. Identification of new mutations in the Cu/Zn Superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. Am J Hum Genet 1995; 56: 592-596.
  • Ikeda M, Abe K, Aoki M, et al. A novel point mutation in the Cu/Zn Superoxide dismutase gene in a patient with familial amyotrophic lateral sclerosis. Hum MoI Genet 1995; 4: 491-492.
  • Radunovic A, Leigh PN (on behalf of the European Familial ALS Group). Cu/Zn Superoxide dismutase gene mutations in amyotrophic lateral sclerosis: correlation between genotype and clinical features. J Neurol Neurosurg Psychiatry 1996; 61: 565-572.
  • Juneja T, Pericak-Vance MA, Laing NG, et al. Prognosis in familial amyotrophic lateral sclerosis: progression and survival in patients with glu100gly and ala4val mutations in Cu,Zn Superoxide dismutase. Neurology 1997; 48: 55-57.
  • Cudkowicz ME, McKenna-Yasek D, Sapp PE, et al. Epidemiology of mutations in Superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol 1997; 41: 210-221.
  • Aoki M, Abe K, Itoyama Y. Molecular analyses of the Cu/Zn Superoxide dismutase gene in patients with familial amyotrophic lateral sderosis (ALS) in Japan. Cell MoI Neurobiol 1998; 18: 639-647.
  • Cudkowicz ME, McKenna-Yasek D, Chen C, Hedley-Whyte ET, Brown RH, Jr. Limited corticospinal tract involvement in amyotrophic lateral sclerosis subjects with the A4V mutation in the copper/zinc Superoxide dismutase gene. Ann Neurol 1998; 43: 703-710.
  • Kawada A, Kato S, Hayashi H, Hirai S. Prominent sensory and autonomie disturbances in familial amyotrophic lateral sclerosis with a Gly93Ser mutation in the SODl gene. J Neurol Sci 1997; 153: 82-85.
  • Takahashi H. Familial amyotrophic lateral sclerosis with or without mutation of the Cu/Zn Superoxide dismutase gene. Brain Nerve 1995; 47: 535-541.
  • Shibata N, Hirano A, Kobayashi M, et al. Immunohistochemical demonstration of Cu/Zn Superoxide dismutase in the spinal cord of patients with familial amyotrophic lateral sderosis. Acta Histochem Cytochem 1993; 26: 619-622.
  • Shibata N, Hirano A, Kobayashi M, et al. Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement J Neuropathol Exp Neurol 1996; 55: 481-490.
  • Ince PG, Tomltins J, Slade JY, Thatcher NM, Shaw PJ. Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn Superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 sporadic cases of ALS. J Neuropathol Exp Neurol 1998; 57: 895-904.
  • Saida K, Ooi N, Nabeshima K, et al. An autopsy case of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase H46R mutation (Abstract). In: 39th Annual Meeting of the Japanese Neurological Association, Kyoto, 1998.
  • Shaw CE, Enayat ZE, Powell JF, et al. Familial amyotrophic lateral sclerosis: molecular pathology of a patient with a SODl mutation. Neurology 1997; 49: 1612-1616.
  • Ince PC, Shaw PJ, Slade JY, et al. Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn Superoxide dismutase gene: pathological and immunohistochemical changes. Acta Neuropathol 1996; 92: 395-405.
  • Orrell RW, King AW, Hilton DA, et al. Familial amyotrophic lateral sclerosis with a point mutation of SOD-1: intrafamilial heterogeneity of disease duration associated with neurofibrillary tangles. J Neurol Neurosurg Psychiatry 1995; 59: 266-270.
  • Rouleau CA, Clark AW, Rooke K, et al. SODl mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 128-131.
  • Kokubo Y, Kuzuhara S, Narita Y, et al. Accumulation of neurofilaments and SOD 1-immuno reactive products in a patient with familial amyotrophic lateral sclerosis with I113TSOD1 mutation. Arch Neurol 1999; 56: 1506-1508.
  • Kato S, Shimoda M, Watanabe Y, Nakashima K, Takahashi K, Ohama E. Familial amyotrophic lateral sclerosis with a two base pair deletion in Superoxide dismutase 1 gene: multisystem degeneration with intracytoplasmic hyaline indusions in astrocytes. J Neuropathol Exp Neurol 1996; 55: 1089-1101.
  • Kato S, Hayashi H, Nakashima K, et al. Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am J Pathol 1997; 151: 611-620.
  • Murayama S, Namba E, Nishiyama K, et al. Molecular pathological studies of familial amyotrophic lateral sclerosis. Neuropathology 1997; 17 (Suppl) 219.
  • Okamoto K, Hirai S, Amari M, Watanabe M, Sakurai A. Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum. Neurosci Lett 1993; 162: 125-128.
  • Hirano A, Kurland LT, Sayre CP. Familial amyotrophic lateral sderosis: a subgroup characterized by posterior and spinocerebellar tract involvement and hyaline indusions in the anterior horn cells. Arch Neurol 1967; 16: 232-243.
  • Hirano A, Nakano I, Kurland LT, et al. Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1984; 43: 471-480.
  • Kusaka H, Hirano A. Cytopathology of the motor neuron. In: Younger DS, ed. Motor Disorders. Philadelphia: Iippincott Williams & Wilkins, 1999: 93-101.
  • Redisteiner M. Ubiquitin-mediated pathways for intracellular proteolysis. Annu Rev Cell Biol 1987; 3: 1-30.
  • Lowe J, Lennox C, Jefferson D, et al. A filamentous inclusion body within anterior horn neurons in motor neurone disease defined by immunocytochemical localisation of ubiquitin. J Neurol Sci 1988; 94: 203-210.
  • Shibata N, Asayama K, Hirano A, Kobayashi M. Immunohistochemical study on Superoxide dismutases in spinal cords from autopsied patients with amyotrophic lateral sclerosis. Dev Neurosci 1996; 18: 492-498.
  • Wong PC, Pardo CA, Borchelt DR, et al. An adverse property of a familial ALS-linked SODl mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14: 1105-1116.
  • Bruijn LI, Becher MW, Lee MK, et al. ALS-linked SODl mutant C85R mediates damage to astrocytes and promotes rapidly progressive disease with SODI-containing inclusions. Neuron 1997; 18: 327-338.
  • Ripps ME, Huntley GW, Hof PR, et al. Transgenic mice expressing an altered murine Superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995; 92: 689-693.
  • Brännström T, Nilsson KEP, Marklund S. Transgenic mice with the D9QA SODl mutation and motor neuron disease: a clinical, morphological, and biochemical study (Abstract). Brain Pathol 1997; 7:1073.
  • Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn Superoxide dismutase mutation. Science 1994; 264: 1772-1775.
  • Friedlander RM, Brown RH, Cagliardini V, Wang J, Yuan J. Inhibition of ICE slows ALS in mice. Nature 1997; 388: 31.
  • DaI Canto MC, Mourelatos Z, Gonatas NK, Chiu A, Curney ME. Neuropathological changes depend on transgene copy numbers in transgenic mice for mutant human Cu,Zn Superoxide dismutase (SOD). In: Nakano I, Hirano A, eds. Progress and Perspectives in Basic Research and Clinical Application. International Congress Series 1104. Tokyo: Elsevier, 1996: 331-338.
  • Dai Canto MC, Curney ME. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 1994; 145: 1271-1280.
  • Kostic V, Gurney ME, Deng H-X Siddique T, Epstein CJ, Przedborski S. Midbrain dopaminergic neuronal degeneration in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 1997; 41: 497-504.
  • Zhang B, Tu P-H, Abtahian F, Trojanowslti JQ, Lee YM-Y. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SODl with a G93A mutation. J Cell Biol 1997; 139: 1307-1315.
  • Mourelatos Z, Gonatas NK, Stieber A, et al. The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn Superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci USA 1996; 93: 5472-5477.
  • Gonatas NK, Stieber A, Mourelatos Z, et al. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Am J Pathol 1992; 140: 731-737.
  • Borchelt DR, Wong PC, Becher MW, et al. Axonal transport of mutant Superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiol Dis 1998; 5: 27-35.
  • Morrison BM, Janssen WG, Gordon JW, et al. Time course of neuropathology in the spinal cord of G86R Superoxide dismutase transgenic mice. J Comp Neurol 1998; 391: 64-77.
  • Dai Canto MC, Gurney ME. A low expressor line of transgenic mice carrying a mutant human Cu,Zn Superoxide dismutase (SODl) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropathol 1997; 93: 537-550.
  • Hirano A. Neuropathology of ALS: an overview. Neurology 1996; 47 (Suppl 2):S63-S66.
  • Sasald S, Ohsawa Y, Yamane K, et al. Familial amyotrophic lateral sclerosis with widespread vacuolation and hyaline inclusions. Neurology 1998; 51: 871-873.
  • Shibata N, Hirano A, Kobayashi M, et al. Presence of Cu/Zn Superoxide dismutase (SOD) immunoreactivity in neuronal hyaline inclusions in spinal cords from mice carrying a transgene for Gly93Ala mutant human Cu/Zn SOD. Acta Neuropathol 1998; 95: 136-142.
  • Borchelt DR, Guarnieri M, Wong PC, et al. Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunits function. J Biol Chem 1995; 270: 3234-3238.
  • Bowling AC, Barkowski EE, McKenna-Yasek D, et al. Superoxide dismutase concentration and activity in familial amyotrophic lateral sclerosis. J Neurochem 1995; 64: 2366-2369.
  • Garofalo O, Figlewicz DA, Thomas SH et al. Superoxide dismutase activity in lymphoblastoid cells from motor neuron disease/amyotrophic lateral sclerosis (MND/ALS) patients. J Neurol Sci 1995; 129 (Suppl): 90-92.
  • Borchelt DR, Lee MK, Slunt HS, et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 1994; 91: 8292-8296.
  • Phillips JP, Tainer JA, Getzoff ED, et al. Subunit-destabilizing mutations in Drosophila copper/zinc Superoxide dismutase: neuropathology and a model of dimer disequilibrium. Proc Natl Acad Sci USA 1995; 92: 8574-8578.
  • Winterbourn CC, Domigan NH Broom JK. Decreased thermal stability of red blood cells glu100?gly Superoxide dismutase from a family with amyotrophic lateral sclerosis. FEBS Lett 1995; 368: 449-451.
  • Nakano R, Inuzuka K, Kikugawa K, et al. Instability of mutant Cu/Zn Superoxide dismutase (Ala4Thr) associated with familial amyotrophic lateral sclerosis. Neurosci Lett 1996; 211: 129-131.
  • Watanabe Y, Kono Y, Nanba E, Ohama E, Nakashima K Instability of expressed Cu/Zn Superoxide dismutase with 2 bp deletion found in familial amyotrophic lateral sclerosis. FEBS Lett 1997; 400: 108-112.
  • Hoffman EK, Wilcox HH Scott RW, Siman R. Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J Neurol Sci 1996; 139: 15-20.
  • Ogawa Y, Kosaka H, Nakanishi T, et al. Stability of mutant Superoxide dismutase-1 associated with familial amyotrophic lateral sclerosis determines the manner of copper release and induction of thioredoxin in erythrocytes. Biochem Biophys Res Commun 1997; 241: 251-257.
  • Bowling AC, Schulz JB, Brown RH Jr, Beal MF. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 1993; 61: 2322-2325.
  • Przedborski S, Donaldson D, Jakowec M, et al. Brain superoxide dismutase, catalase, and glutathione peroxidase activities in amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 158-165.
  • Watanabe Y, Kuno N, Kuno Y, et al. Absence of the mutant SODl in familial amyotrophic lateral sclerosis (FALS) with two base pair deletion in the SODl gene. Acta Neurol Scand 1997; 95: 167-172.
  • Shaw PJ, Chinnery RH Thagesen H, Borthwick GH Ince PC. Immunocytochemical study of the distribution of the free radical scavenging enzymes Cu/Zn Superoxide dismutase (SODl); Mn Superoxide dismutase (Mn SOD) and catalase in the normal human spinal cord and in motor neuron disease. J Neurol Sci 1997; 147: 115-125.
  • Liu Y, Brooks BR, Taniguchi N, Hartmann HA. CuZnSOD and MnSOD immunoreactivity in brain stem motor neurons from amyotrophic lateral sclerosis. Acta Neuropathol 1998; 95: 63-70.
  • Rosen DR, Bowling AC, Patterson D, et al. A frequent ala 4 to val Superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Hum MoI Genet 1994; 3: 981-987.
  • Bergeron C, Muntasser S, Somerville MJ, Weyer L, Percy ME. Copper/zinc Superoxide dismutase mRNA levels are increased in sporadic amyotrophic lateral sclerosis motoneurons. Brain Res 1994; 659: 272-276.
  • Nishiyama K, Murayama S, Kwak S, Kanazawa I. Expression of the copper-zinc Superoxide dismutase gene in amyotrophic lateral sclerosis. Ann Neurol 1997; 41: 551-556.
  • Beckman JS, Beckman IW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 1990; 87: 1620-1624.
  • Liu D, Yang R, Yan X, McAdoo DJ. Hydroxyl radicals generated in vivo kill neurons in the rat spinal cord: electrophysiological, histological, and neurochemical results. J Neurochem 1994; 62: 37-44.
  • Groner Y, Elroy-Stein O, Avraham KB, et al. Cell damage by excess CuZnSOD and Down's syndrome. Biomed Pharmacother 1994; 48: 231-240.
  • Peled-Kamar M, Lotem J, Wirguin I, Weiner L, Hermalin A, Groner Y. Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn Superoxide dismutase. Proc Natl Acad Sci USA 1997; 94: 3883-3887.
  • Tu P-H, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM-Y. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1996; 93: 3155-3160.
  • Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn Superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996; 13: 43-47.
  • Kim SM, Bum WS, Kwon OB, Kang JH. The free radical-generating function of a familial amyotrophic lateral sclerosisassociated D90A Cu,Zn-superoxide dismutase mutant Biochem MoI Biol Int 1998; 46: 1191-1200.
  • Yim H-S, Kang J-H, Chock PB, Stadtman ER, Yim MB. A familial amyotrophic lateral sclerosis-associated A4V Cu,Zn-superoxide dismutase mutant has a lower Km, for hydrogen peroxide. J Biol Chem 1997; 272: 8861-8863.
  • Liochev SI, Chen LL, Hallewell RA, Fridovich I. Superoxidedependent peroxidase activity of H48Q: a Superoxide dismutase variant associated with familial amyotrophic lateral sclerosis. Arch Biochem Biophys 1997; 346: 263-268.
  • Bogdanov MB, Ramos LE, Xu Z, Beal MF. Elevated 'hydroxyl radical' generation in vivo in an animal model of amyotrophic lateral sclerosis. J Neurochem 1998; 71: 1321-1324.
  • Liu R, Althaus JS, Ellerbrock BR, Becker DA, Gurney MR Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 1998; 44: 763-770.
  • Aguirre T, van den Bosch L, Goetschalck K, et al. Increased sensitivity of fibroblasts from amyotrophic lateral sclerosis patients to oxidative stress. Ann Neurol 1998; 43: 452-457.
  • Nishida CR, Gralla EB, Valentine JS. Characterization of three yeast copper-zinc Superoxide dismutase mutants analogous to those coded for in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1994; 91: 9906-9910.
  • Cam MT, Battistoni A, Polizio F, et al. Impaired copper binding by the H46R mutant of human Cu,Zn Superoxide dismutase, involved in amyotrophic lateral sclerosis. FEBS Lett 1994; 356: 314-316.
  • Hottinger AF, Fine EG, Gurney ME, Zurn AD, Aebischer P. The copper chelator d-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur J Neurosci 1997; 9: 1548-1551.
  • Nagano S, Ogawa Y, Yanagihara T, Sakoda S. Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci Lett 1999; 265: 159-162.
  • Ghadge GD, Lee JP, Bindokas W, et al. Mutant Superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J Neurosci 1997; 17: 8756-8766.
  • Rothstein JD, Dykes-Hoberg M, Corson LB, et al. The copper chaperone CCS is abundant in neurons and astrocytes in human and rodent brain. J Neurochem 1999; 72: 422-429.
  • Corson LB, Strain JJ, Culotta VC, Cleveland DW. Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosislinked Superoxide dismutase mutants. Proc Natl Acad Sci USA 1998; 95: 6361-6366.
  • Lyons IT, Liu H, Goto JJ, et al. Mutations in copper-zinc Superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein. Proc Natl Acad Sci USA 1996; 93: 12240-12244.
  • Gurney ME, Cutting FB, Zhai P, et al. Benefit of vitamin E, riluzole, and gabapentine in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 147-157.
  • Barnéoud P, Curet O. Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Exp Neurol 1999; 155: 243-251.
  • Reinholz MM, Merke CM, Poduslo JF. Therapeutic benefits of putresdne-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 1999; 159: 204-216.
  • Klivenyi P, Ferrante RJ, Matthews RT, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 1999; 5: 347-350.
  • Bruijn LI, Beal MF, Becher MW, et al. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked Superoxide dismutase-1 mutant Proc Natl Acad Sci USA 1997; 94: 7606-7611.
  • Marklund SL, Anderse PM, Forsgren L, et al. Normal binding and reactivity of copper in mutant Superoxide dismutase isolated from amyotrophic lateral sclerosis patients. J Neurochem 1997; 69: 675-681.
  • Singh RJ, Karoui H, Gunther MR, Beckman JS, Mason RP, Kalyanaraman B. Reexamination of the mechanisms of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn Superoxide dismutase mutants and H2O2. Proc Natl Acad Sci USA 1998; 95: 6675-6680.
  • Goto JJ, Cralla EB, Valentine JS, Cabelli DR Reactions of hydrogen peroxide with familial amyotrophic lateral sclerosis mutant human copper-zinc Superoxide dismutases studied by pulse radiolysis. J Biol Chem 1998; 273: 30104-30109.
  • Liochev SI, Chen LL, Hallewell RA, Fridovich I. The familial amyotrophic lateral sclerosis-associated amino acid substitutions E100G, C93A, and C93R do not influence the rate of inactivation of copper- and zinc-containing Superoxide dismutase by H2O2. Arch Biochem Biophys 1998; 352: 237-239.
  • Ferrante RJ, Browne SE, Shinobu LA, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 1997; 69: 2064-2074.
  • Shibata N, Nagai R, Miyata S, et al. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with Superoxide dismutase-1 mutation. Acta Neuropathol 2000 (in press).
  • Fitzmaurice PS, Shaw IC, Kleiner HE, et al. Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 1996; 19: 797-798.
  • Jaarsma D, Guchelaar H-J, Haasdijk E, et al. The antioxidant N-acetylcysteine does not delay disease onset and death in a transgenic mouse model of amyotrophic lateral sclerosis. Ann Neurol 1998; 44: 293.
  • Vyth A, Timmer JG, Bossuyt PM, Louwerse ES, Vianney de Jong JMB. Survival in patients with amyotrophic lateral sclerosis, treated with an array of antioxidants. J Neurol Sci 1996; 139 (Suppl): 99-103.
  • Ischiropoulos H, Al-Mehdi AB. Peroxynitrite-mediated oxidative protein modification. FEBS Lett 1995; 364: 279-282.
  • Crow JP, Ye YZ, Strong M, Kirk M, Barnes S, Beckman JS. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L J Neurochem 1997; 69: 1945-1953.
  • Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 1993; 364: 584.
  • Bolanos JP, Heales SJR, Land JM, Clark JB. Effects of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurons and astrocytes in primary culture. J Neurochem 1995; 64: 1965-1972.
  • Berieft BS, Friguet B, Yim MB, Chock PB, Stadtman ER Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthase mimics adenyiation: relevance to signal transduction. Proc Natl Acad Sci USA 1996; 93: 1776-1780.
  • Troy CM, Derossi D, Prochiantz A, Greene LA, Shelanski ML Downregulation of Cu/Zn Superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J Neurosci 1996; 16: 253-261.
  • Vmer RI, Hühmer AFR, Bigelow DJ, Schöneich C. The oxidative inactivation of sarcoplasmic reticulum Ca2+ATPase by peroxynitrite. Free Rad Res 1996; 24: 243-259.
  • Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS. Decreased zinc affinity of amyotrophic lateral sclerosisassociated Superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 1997; 69: 1936-1944.
  • Abe K, Pan L-H, Watanabe M, Konno H, Kato T, Itoyama Y. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol Res 1997; 19: 124-128.
  • Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH, Jr. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 1997; 42: 646-654.
  • Ferrante RJ, Shinobu LA, Schulz JB, et al. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc Superoxide dismutase mutation. Ann Neurol 1997; 42: 326-334.
  • Strong MJ, Sopper MM, Crow JP, Strong WL, Beckman JS. Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem Biophys Res Commun 1998; 248: 157-164.
  • Rothstein JD, Van Kämmen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter CLT-I in amyotrophic lateral sclerosis. Ann Neurol 1995; 38: 73-84.
  • Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16: 675-685.
  • Trotti D, Rolfs A, Danbolt NC, Brown RH Jr, Hediger MA. SODl mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 1999; 2: 427-433.
  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 1994; 14: 2924-2932.
  • Trotti D, Rossi D, Gjesdal O, et al. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 1996; 271: 5976-5979.
  • Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ. Calcium-permeable a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular derminant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1997; 42: 200-207.
  • Samarasinghe S, Virgo L, de Belleroche J. Distribution of the N-methyi-D-aspartate glutamate receptor subunit NR2A in control and amyotrophic lateral sclerosis spinal cord. Brain Res 1996; 727: 233-237.
  • Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/kmate receptor-mediated injury in vitro. J Neurosci 1996; 16: 4069-4079.
  • Regan RF. The vulnerability of spinal cord neurons to exatotoxic injury: comparison with cortical neurons. Neurosci Lett 1996; 213: 9-12.
  • Urushitani M, Shimohama S, Kihara T, et al. Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: involvement of glutamate-induced nitric oxide in motor neuron toxicity and nonmotor neuron protection. Ann Neurol 1998; 44: 796-807.
  • Coyle JT, Puttfarcken P. Qxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262: 689-695.
  • Siklos L, Engelhardt J, Harati Y, Smith RG, Joó F, Appel SH. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 203-216.
  • Siklos L, Engelhardt J, Alexianu ME, Gurney ME, Siddique T, Appel SH. Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J Neuropathol Exp Neurol 1998; 57: 571-587.
  • Carri MT, Ferri A, Battistoni A, et al. Expression of a Cu,Zn Superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondria! alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 1997; 414: 365-368.
  • Ince P, Stout N, Shaw P, et al. Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 1993; 19: 291-299.
  • Bensimon C, Lacomblez L, Meininger V, The ALS/riluzole study group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330: 585-591.
  • Yoshiyama Y, Yamada T, Asanuma K, Asahi T. Apoptosis related antigen, Ley and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol 1994; 88: 207-211.
  • Mu X, He J, Anderson DW, Trojanowski JQ, Springer JE Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neural 1996; 40: 379-386.
  • Martin LJ. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 1999; 58: 459-471.
  • Migheli A, Piva R, Atzori C, Troost D, Schiffer DC, Jr. JNK/SAPK kinases and transcription factor NF-?B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1997; 56: 1314-1322.
  • Cookson MR, Ince PC, Shaw PJ. Peroxynitrite and hydrogen peroxide induced cell death in the NSC34 neuroblastoma X spinal cord cell line: role of poly(ADP-ribose) polymerase. J Neurochem 1998; 70: 501-508.
  • Eliasson MJL, Sampei K, Mandir AS, et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 1997; 3: 1089-1095.
  • Cookson MR, Shaw PJ. Qxidative stress and motor neuron disease. Brain Pathol 1999; 9: 165-186.
  • Migheli A, Atzori C, Piva R, et al. Lack of apoptosis in mice with ALS. Nat Med 1999; 5: 966-967.
  • Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborsla S. Bd-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997; 277: 559-562.
  • Rabizadeh S, Cralla EB, Borchelt DR, et al. Mutations associated with amyotrophic lateral sclerosis convert Superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc Nad Acad Sci USA 1995; 92: 3024-3028.
  • Durham HD, Roy J, Dong L, et al. Aggregation of mutant Cu/Zn Superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 1997; 56: 523-530.
  • Estevez AC, Crow JP, Sampson JB, et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient Superoxide dismutase. Science 1999; 286: 2498-2500.
  • Pasinelli P, Borchelt DR, Houseweart MK, Cleveland DW, Brown RH, Jr. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc Superoxide dismutase. Proc Nad Acad Sci USA 1998; 95: 15763-15768.
  • Rothstein JD, Bristol IA Hosier B, Brown RH Jr, Kuncl RW. Chronic inhibition of Superoxide dismutase produces apoptotic death of spinal neurons. Proc Nad Acad Sci USA 1994; 91: 4155-4159.
  • Troy CM Stefanis L, Prochiantz A, Creene LA, Shelanski ML The contrasting roles of ICE family proteases and interleukin-1ß in apoptosis induced by trophic factor withdrawal and by copper/zinc Superoxide dismutase down-regulation. Proc Natl Acad Sci USA 1996; 93: 5635-5640.
  • Ciasson BI, Mushynsld WE Aberrant stress-induced phosphorylation of perikaryal neurofilaments. J Biol Chem 1996; 271: 30404-30409.
  • Guiato S, Tsai L.H., Woodgett J, Miller CC. Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. JNeurochem 1996; 66: 1698-1706.
  • Côte F, Collard J-F, Julien J-P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 1993; 73: 32-46.
  • Xu Z, Cork LC, Griffin JW, Cleveland DW. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 1993; 73: 23-33.
  • Wong PC, Marszalek J, Crawford TO, et al. Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radical growth, and results in neurofilamentous accumulation in motor neurons. J Cell Biol 1995; 130: 1413-1422.
  • Williamson TL, Bruijn LI, Zhu Q, et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked Superoxide dismutase-1 mutant Proc Natl Acad Sci USA 1998; 95: 9631-9636.
  • Coullard-Després S, Zhu Q, Wong PC, Price DL, Cleveland DW, Julien J-P. Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant Superoxide dismutase. Proc Nad Acad Sci USA 1998; 95: 9626-9630.
  • Eyer J, Cleveland DW, Wong PC, Peterson A. Pathogenesis of two axonopathies does not require axonal neurofilaments. Nature 1998; 391: 584-587.
  • Bruijn LI, Houseweart MK, Kato S, et al. Aggregation and motor neuron toxicity of an ALS-linked SODl mutant independent from wild-type SODl. Science 1998; 281: 1851-1854.
  • Koide T, Igarashi S, Kikugawa K, et al. Formation of granular cytoplasmic aggregates in COS7 cells expressing mutant Cu/Zn Superoxide dismutase associated with familial amyotrophic lateral sclerosis. Neurosci Lett 1998; 257: 29-32.
  • Bruening W, Ciasson B, Figlewicz DA, Mushynski WE, Durham HD. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 1999; 72: 693-699.
  • Brown RH, Jr. SODl aggregates in ALS: cause, correlate or consequence? Nature Med 1998; 4: 1362-1364.
  • Ogawa K, Kanematsu S, Takabe K, Asada K. Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of Superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 1995; 36: 565-575.
  • Vinters HV, Wang ZZ, Secor DL Brain parenchyma! and microvascular amyloid in Alzheimer's disease. Brain Pathol 1996; 6: 179-195.
  • Bates CP, Mangiarini L, Davies SW. Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol 1998; 8: 699-714.
  • Prusiner SB. The prion diseases. Brain Pathol 1998; 8: 499-513.
  • Wells-Knecht KJ, Brinkmann E, Wells-Knecht MC, et al. New biomarkers of Maillard reaction damage to proteins. Nephrol Dial Transplant 1996; 11 (Suppl 5): 41-47.
  • Oya T, Hattori N, Mizuno Y, et al. Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. J Biol Chem 1999; 274: 18492-18502.
  • Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix. J Biol Chem 1989; 264: 21597-21602.
  • Hayase F, Shibuya T, Sato J, Yamamoto M. Effects of oxygen and transition metals on the advanced Maillard reaction of proteins with glucose. Biosci Biotech Biochem 1996; 60: 1820-1825.
  • Fu M-X, Requena JR, Jenkins AJ, et al. The advanced glycation end product, NE-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 1996; 271: 9982-9986.
  • Nagai R, Ikeda K, Higashi T, et al. Hydroxyl radical mediates NE-(carboxymethyl)lysine formation from Amadori product Biochem Biophys Res Commun 1997; 234: 167-172.
  • Miyata T, van Ypersele de Strihou C, Kurosawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of 'carbonyl stress' in long-term uremic complications. Kidney Int 1999; 55: 389-399.
  • Esterbauer H, Schaur JS, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 1991; 11: 81-128.
  • Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-Hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 1999; 274: 2234-2242.
  • Smith MA, Perry C, Richey PL, et al. Qxidative damage in Alzheimer's. Nature 1996; 382: 120-121.
  • Sayre LM, Zelasko DA, Harris PL, Perry C, Salomon RC, Smith MA. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem 1997; 68: 2092-2097.
  • Calingasan NY, Uchida K, Cibson CE. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease. J Neurochem 1999; 72: 751-756.
  • Oteiza PI, Uchitel OD, Carrasquedo F, Dubrovski AL, Roma JC, Fraga CC. Evaluation of antioxidants, protein, and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neurochem Res 1997; 22: 535-539.
  • Shaw PC, Ince PC, Falkous C, Mande D. Qxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neural 1995; 38: 691-695.
  • Pedersen WA, Fu W, Keller JN, et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neural 1998; 44: 819-824.
  • Pedersen WA, Cashman NR, Mattson MP. The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells. Exp Neural 1999; 155: 1-10.
  • Shibata N. Hirano A, Kato S, et al. Advanced glycation endproducts are deposited in neuronal hyalin inclusions: a study on familial amyotrophic lateral sclerosis with Superoxide dismutase-1 mutation. Acta Neuropathol 1999; 97: 240-246.
  • Kato S, Horiuchi S, Nakashima K, et al. Astrocytic hyaline inclusions contain advanced glycation endproducts in familial amyotrophic lateral sclerosis with Superoxide dismutase 1 gene mutation: immunohistochemical and immunoelectron microscopical analysis. Acta Neuropathol 1999; 97: 260-266.
  • Chou SM, Wang HS, Taniguchi A, Bucala R. Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. MoI Med 1998; 4: 324-332.
  • Andrus PK, Fleck TT, Gurney ME, Hall ED. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 1998; 71: 2041-2048.
  • Hall ED, Andrus PK, Oostveen JA, Fleck TT, Gurney ME Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J Neurosci Res 1998; 53: 66-77.
  • Taldzawa N, Takada K, Ohkawa K Inhibitory effect of nonenzymatic glycosylation on ubiquitination and ubiquitin-mediated degradation of lysozyme. Biochem Biophys Res Commun 1993; 192: 700-706.
  • Olkowski ZL Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport 1998; 9: 239-242.
  • Comi CP, Bordoni A, Salani S, et al. Cytochrome c-oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neural 1998; 43: 110-116.
  • Figlewicz DA, Krizus A, Martinoli MC, et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum MoI Genet 1994; 3: 1757-1761.
  • Al-Chalabi A, Powdl JF, Russ C, Leigh N. Novel mutations in a hypervariable site of the heavy neurofilament subunit in ALS. Neurology 1997; 48: A349-A350.
  • Tomkins J, Usher P, Slade JY, et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 1998; 9: 3967-3970.
  • Aoki M, Lin C-LG, Rothstein JD, et al. Mutations in the glutamate transport EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann Neurol 1998; 43: 645-653.
  • Takahashi R, Yokoji H, Misawa H, Hayashi M, Hu J, Deguchi T. A null mutation in the human CNTF gene is not causally related to neurodegenerative diseases. Nat Genet 1994; 7: 79-84.
  • Orrell RW, King AW, Lane RJM, de Belleroche JS. Investigation of a null mutation of the CNTF gene in familial amyotrophic lateral sclerosis. J Neurol Sci 1995; 132: 126-128.
  • Imura T, Shimohama S, Kawamata J, Kimura J. Genetic variation in the ciliary neurotrophic factor receptor a gene and familial amyotrophic lateral sclerosis. Ann Neurol 1998; 43: 275.
  • Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 1994; 13: 975-988.
  • Masu Y, Wolf E, Holtmann B, Sendtner M, Brem G, Thoenen H. Disruption of the CNTF gene results in motor neuron degeneration. Nature 1993; 365: 27-32.
  • DeChiara TM, Vejsada R, Poueymirou WT, et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 1995; 83: 313-322.
  • Kunst CB, Mezey E, Brownstein MJ, Patterson D. Mutations in SODl associated with amyotrophic lateral sclerosis cause novel protein interactions. Nat Genet 1997; 15: 91-94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.