150
Views
27
CrossRef citations to date
0
Altmetric
Review Article

The genetics of motor neuron diseases

&
Pages 225-231 | Received 02 May 2003, Accepted 02 May 2003, Published online: 10 Jul 2009

References

  • Hudson AJ, Kiernan JA, Munoz DG et al. Clinicopathological features of primary lateral sclerosis are different from amyo- trophic lateral sclerosis. Brain Res Bull 1993; 30: 359–364.
  • Pringle CE, Hudson AJ, Munoz DG et al. Primary lateral sclerosis: clinical features, neuropathology and diagnostic criteria. Brain 1992; 115: 495–520.
  • Bailey-Wilson JE, Plato CC, Elston RC, Garruto RM. Potential role of an additive genetic component in the cause of amyotrophic lateral sclerosis and Parkinsonism-dementia in the Western Pacific. Am J Med Genet 1993; 45: 68–76.
  • Siddique T, Figlewicz DA, Pericak-Vance MA et al. Linkage of a gene causing familial amyotrophic lateral sclerosis to chromo- some 21 and evidence of genetic locus heterogeneity. New Engl J Med 1991; 324: 1381–1384.
  • Figlewicz DA, McInnis MG, Goto J et al. Identification of flanking markers for the familial amyotrophic lateral sclerosis gene ALS1 on chromosome 21. J Neurolo Sci 1994; 124S: 90–95.
  • Rosen DR, Siddique T, Patterson D et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyo- trophic lateral sclerosis. Nature 1993; 362: 59–62.
  • Orrell RW, Habgood JJ, Gardiner I et al. Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for Cu/Zn superoxide dismutase in UK families with amyotrophic lateral sclerosis. Neurology 1997; 48: 746–751.
  • Cudkowicz ME, McKenna-Yasek D, Sapp PE et al. Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol 1997; 41: 210–221.
  • Andersen PM, Forsgren L, Binzer M et al. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homo- zygosity for Asp90Ala Cu/Zn-superoxide dismutase mutation. Brain 1996; 119: 1153–1172.
  • Orrell RW, Habgood J, Rudge P et al. Difficulties in distinguish- ing sporadic from familial amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 810–812.
  • Figlewicz DA, Garruto RM, Krizus A et al. The Cu/Zn superoxide dismutase gene in ALS and Parkinsonism-dementia of Guam. NeuroReport 1994; 5: 557–560.
  • Orrell RW, Habgood JJ, Malaspina A et al. Clinical characteristics of SOD1 gene mutations in UK families with ALS. J Neurol Sci 1999; 169: 56–60.
  • Andersen PM, Nilsson P, Keranen ML et al. Phenotypic heterogeneity in motor neuron disease patients with Cu/Zn superoxide dismutase mutations in Scandinavia. Brain 1997; 120: 1723–1727.
  • Ince PG, Tomkins J, Slade JY et al. Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 sporadic cases of ALS. J Neuropath Exp Neurology 57: 895–904.
  • Gurney ME, Pu H, Chiu AY et al. Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science 1994; 264: 1772–1775.
  • Bruijn LI, Becher MW, Lee MK et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997; 18: 327–338.
  • Price DL, Wong PC, Borchelt DR et al. Amyotrophic lateral sclerosis and Alzheimer’s disease. Lessons from model systems. Rev Neurol 1997; 153: 484–495.
  • Morrison BM, Morrison JH, Gordon JW. Superoxide dismutase and neurofilament transgenic models of amyotrophic lateral sclerosis. J Exp Zool 1998; 282: 32–47.
  • Gurney M, Cutting FB, Zhai P et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 147–157.
  • Klivenyi P, Ferrante RJ, Matthews RT et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med 1999; 5: 347–350.
  • Reinholz MM, Merkle CM, Poduslo JF. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 1999; 159: 204–216.
  • Hottinger AF, Fine EG, Gurney ME et al. The copper chelator d-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amotrophic lateral sclerosis. European Journal of Neuroscience 1997; 9: 1548–1551.
  • Nagano S, Ogawa Y, Yahagihara T, Sakoda S. Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci Lett 1999; 265: 159–162.
  • Barneoud P, Curet O. Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Exp Neurol 1999; 155: 243–251.
  • Li M, Ona VO, Guegan C et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 2000; 288: 335–339.
  • Kostic V, Jackson-Lewis V, de Bilbao et al. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997; 277: 559–562.
  • Mohajeri MH, Figlewicz DA, Bohn MC. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motor neuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum Gene Ther 1999; 10: 1853–1866.
  • Azzouz M, Hottinger A, Paterna JC et al. Increased motor neuron survival and improved neuromuscular function in transgenic ALS mice after intraspinal injection of adeno-associated virus encoding Bcl-2. Hum Mol Genet 2000; 9: 803–811.
  • Lacomblez L, Bensimon G, Leigh PN et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 1996; 347: 1425–1431.
  • Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis ALS/motor neuron disease (MND) (Cochrane Review). In: The Cochrane Library, Issue 2, 2000. Oxford: Update Software.
  • Cleveland DW. From Charcot to SOD1: Mechanisms of selective motor neuron death in ALS. Neuron 1999; 24: 515–520.
  • Rowland LP, Shneider NA. Medical Progress. Amyotrophic lateral sclerosis. N Engl J Med 2001; 344: 1688–1700.
  • Brown RH Jr, Robberecht W. Amyotrophic lateral sclerosis. Pathogenesis. Seminars Neurol 2001; 21: 131–139.
  • Shaw PJ. Mechanisms of cell death and treatment prospects in motor neuron disease. Hong Kong Med J 2001; 7: 267–280.
  • Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Neurosci Rev 2001; 2: 806–819.
  • Rothstein JD, Vankammen M, Levey AI et al. Selective loss of glial glutamate transporter Glt-1 in amyotrophic lateral sclerosis. Ann Neurol 1995; 38: 73–84.
  • Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci 1996; 16: 4069–4079.
  • Williams TL, Day NC, Ince PG et al. Calcium-permeable AMPA receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1997; 42: 200– 207.
  • Carriedo SG, Yin HZ, Sensi SL, Weiss JH. Rapid Ca entry through Ca-permeable AMPA/kainate channels triggers marked intracel- lular Ca rises and consequent oxygen radical production. J Neurosci 1998; 18: 7727–7738.
  • Siklos L, Engelhardt JI, Alexianu ME et al. Intracellular calcium parallels motor neuron degeneration in SOD1 mutant mice. J Neuropathol Exp Neurol 1998; 57: 571–587.
  • Roy J, Minotti S, Dong L et al. Glutamate potentiates the toxicity of mutant Cu/Zn –superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J Neurosci 1998; 18: 9673–9684.
  • Kruman II, Pedersen WA, Springer JE, Mattson MP. ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 1999; l60: 28–39.
  • Hosler BA, Sapp PC, Berger R et al. Refined mapping and characterization of the recessive familial amyotrophic lateral sclerosis locus on chromosome 2q33. Neurogenetics 1998; 2: 34–42.
  • Hadano S, Hand CK, Osuga H et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet 2001; 29: 166–173.
  • Yang Y, Hentati A, Deng H-X et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet 2001; 29: 160–165.
  • Hand CK, Khoris J, Salachas F et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Hum Genet 2002; 70: 251–256.
  • Abalkhail A, Mitchell J, Habgood J et al. A new familial Amyotrophic Lateral Sclerosis Locus on Chromosome 16q12.1– 16q12.2. Am J Hum Genet 2003; 73: 383–389.
  • Ruddy DM, Parton MJ, Al-Chalabi A et al. Two families with familial Amyotrophic Lateral Sclerosis are linked to a novel locus on chromosome 16q. Am J Hum Genet 2003; 73: 390–396.
  • Sapp PC, Hosler BA, McKenna-Yasek D et al. Identification of two novel loci for dominantly inherited familial Amyotrophic Lateral Sclerosis. Am J Hum Genet 2003; 73: 397–403.
  • Chance PF, Rabin BA, Ryan SG et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclero- sis to chromosome 9q34. Am J Hum Genet 1998; 62: 633–640.
  • Hentati A, Ouahchi K, Pericak-Vance MA et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15–q22. Neurogenetics 1998; 2: 55–60.
  • Hosler BA, Siddique T, Sapp PC et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 2000; 284: 1664–1669.
  • Hutton M, Lendon CL, Rizzu P et al. Association of missense and 5-prime splice site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393: 702–705.
  • Parboosingh JS, Rouleau GA, Meninger V et al. Absence of mutations in the Mn superoxide dimutase or catalase genes in familial amyotrophic lateral sclerosis. Neuromusc Disord 1995; 5: 7–10.
  • Figlewicz DA, Krizus A, Martinoli MG et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet 1994; 3: 1757–1761.
  • Al-Chalabi A, Andersen PM, Nilsson P et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Molec Genet 1999; 8: 157–164.
  • Beaulieu J-M, Nguyen MD, Julien J-P. Late onset death of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 1999; 147: 531–544.
  • Lin CLG, Bristol LA, Jin L et al. Aberrant RNA processing in a neurodegenerative disease: a common cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998; 20: 589–602.
  • Nagai M, Abe K, Okamoto K, Itoyama Y. Identification of alternative splicing forms of GLT-1 mRNA in the spinal cord of amyotrophic lateral sclerosis patients. Neurosci Lett 1998; 244: 165–168.
  • Meyer T, Fromm A, Munch C et al. The RNA of the gluta- mate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci 1999; 170: 45–50.
  • Al-Chalabi A, Enayat ZE, Bakker MC et al. Association of apolipoprotein E epsilon 4 allele with bulbar onset motor neuron disease. Lancet 1996; 347: 159–160.
  • Comi GP, Bordoni A, Salani S et al. Cytochrome c oxidase subunit 1 microdeletion in a patient with motor neuron disease. Ann Neurol 1998; 43: 110–116.
  • Jackson M, Morrison KE, Al-Chalabi A et al. Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: homozygous NAIP deletion in a sporadic case. Ann Neurol 1996; 39: 796–800.
  • Olkowski ZL. Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport 1998; 9: 239–242.
  • Hayward C, Colville S, Swingler RJ, Brock DJH. Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis. Neurology 1999; 52: 1899–1901.
  • Mitsumoto H, Sliman RJ, Schafer IA et al. Motor neuron disease and adult hexosaminidase A deficiency in two families: evidence for multisystem degeneration. Ann Neurol 1995; 17: 378–385.
  • Myerowitz R. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum Mutat 1997; 9: 195–208.
  • Merry DE, Kobayashi Y, Bailey CK et al. Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum Mol Genet 1998; 7: 693–701.
  • Doyu M, Sobue G, Muaki E et al. Severity of X-linked recessive bulbospinal neuronopathy correlates with the size of the tandem CAG repeat in androgen receptor gene. Ann Neurol 1992; 32: 707–710.
  • Garofalo O, Figlewicz DA, Leigh PN et al. Androgen receptor gene polymorphisms in amyotrophic lateral sclerosis. Neuro- musc Disord 1993; 3: 195–199.
  • Parboosingh JS, Figlewicz DA, Krizus A et al. Spinobulbar mus- cular atrophy can mimic ALS: the importance of genetic testing in male patients with atypical ALS. Neurology 1997; 49: 568–572.
  • Figlewicz DA, Bird TD. ‘‘Pure’’ hereditary spastic paraplegias: the story becomes complicated. Neurology 1999; 53: 5–7.
  • Seri M, Cusano R, Forabosco P et al. Genetic mapping to 10q23.3–q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet 1999; 64: 586–593.
  • Reid E, Dearlove AM, Rhodes M, Rubinsztein DC. A new locus for autosomal dominant pure hereditary spastic paraplegia mapping to chromosome 12q13, and evidence for further genetic heterogeneity. Am J Hum Genet 1999; 65: 757–763.
  • Reid E, Dearlove AM, Osborn O et al. A locus for autosomal dominant pure hereditary spastic paraplegia maps to chromo- some 19q13. Am J Hum Genet 2000; 66: 728–732.
  • Fontaine B, Davoine CS, Durr A et al. A new locus for autosomal dominant pure spastic paraplegia on chromosome 2q24–q34. Am J Hum Genet 2000; 66: 702–707.
  • Vazza G, Zortea M, Boaretto F et al. A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy, SPG 14, maps to chromosome 3q27–q28. Am J Hum Genet 2000; 67: 504–509.
  • Hughes CA, Byrne PC, Webb S et al. SPG 15, a new locus for autosomal recessive complicated HSP on chromosome 14q. Neurology 2001; 56: 1230–1233.
  • Tamagaki A, Shima M, Tomita R et al. Segregation of a pure form of spastic paraplegia and NOR insertion into Xq11.2. Am J Med Genet 2000; 94: 5–8.
  • Patel H, Hart PE, Warner TT et al. The Silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12–q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet 2001; 69: 209–215.
  • Zhao X, Alvarado D, Rainier S et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet 2001; 29: 326–331.
  • Hazan J, Fonknechten N, Mavael D et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genetics 1999; 23: 296–303.
  • Casari G, De Fusco M, Ciarmatori S et al. A spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93: 973–983.
  • Auer-Grumbach M, Loscher WN, Wagner K et al. Phenotypic and genotypic heterogeneity in hereditary motor neuronopathy type V. Brain 2000; 123: 1612–1623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.