Publication Cover
Cochlear Implants International
An Interdisciplinary Journal for Implantable Hearing Devices
Volume 19, 2018 - Issue 2
273
Views
3
CrossRef citations to date
0
Altmetric
Original articles

A new approach for the determination of ECAP thresholdsFootnote

, &

References

  • Alvarez, I., de la Torre, A., Sainz, M., Roldán, C., Schoesser, H., Spitzer, P. 2010. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the tempo+ cochlear implant speech processor. Ear and Hearing, 31: 134–145. doi: 10.1097/AUD.0b013e3181bdb88f
  • Bahmer, A., Baumann, U. 2012. Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: I. Amplitude growth functions. Journal of Neuroscience Methods, 205: 202–211. doi: 10.1016/j.jneumeth.2011.12.005
  • Basta, D., Dahme, A., Todt, I., Ernst, A. 2007. Relationship between intraoperative eCAP thresholds and postoperative psychoacoustic levels as a prognostic tool in evaluating the rehabilitation of cochlear implantees. Audiology & Neuro-otology, 12: 113–118. doi: 10.1159/000097797
  • Baudhuin, J.L., Hughes, M.L., Goehring, J.L. 2016. A comparison of alternating polarity and forward masking artifact-reduction methods to resolve the electrically evoked compound action potential. Ear and Hearing, 37: e247–e255. doi:10.1097/AUD.0000000000000288 doi: 10.1097/AUD.0000000000000288
  • Bevington, P.R., Robinson, K.B. 2003. Data reduction and error analysis. New York: McGraw-Hill.
  • Botros, A., Psarros, C. 2010. Neural response telemetry reconsidered: I. The relevance of ECAP threshold profiles and scaled profiles to cochlear implant fitting. Ear and Hearing, 31: 367–379. doi: 10.1097/AUD.0b013e3181c9fd86
  • Briaire, J.J., Frijns, J.H. 2005. Unraveling the electrically evoked compound action potential. Hearing Research, 205(1–2): 143–156. doi: 10.1016/j.heares.2005.03.020
  • Brown C. 2003. The electrically evoked whole nerve action potential. In: Cullington HE, (ed.) Cochlear Implants — Objective Measures. London: Whurr Publishers Ltd.
  • Brown, C.J., Abbas, P.J., Gantz, B. 1990. Electrically evoked whole-nerve action potentials: Data from human cochlear implant users. The Journal of the Acoustical Society of America, 88(3): 1385–1391. doi: 10.1121/1.399716
  • Brown, C., Abbas, P., Borland, J., Bertschy, M. 1996. Electrically evoked whole nerve action potentials in ineraid cochlear implant users: responses to different stimulating electrode configurations and comparison to psychophysical responses. Journal of Speech and Hearing Research, 39: 453–467. doi: 10.1044/jshr.3903.453
  • Brown, C.J., Abbas, P.J., Etlert, C.P., O’Brient, S., Oleson, J.J. 2010. Effects of long-term use of a cochlear implant on the electrically evoked compound action potential. Journal of the American Academy of Audiology, 21: 5–15. doi: 10.3766/jaaa.21.1.2
  • Brown, C.J., Hughes, M.L., Luk, B., Abbas, P.J., Wolaver, A., Gervais, J. 2000. The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear and Hearing, 21: 151–163. doi: 10.1097/00003446-200004000-00009
  • Cafarelli Dees, D. Dillier, N., Lai, W.K., von Wallenberg, E., van Dijk, B., Akdas, F. et al. 2005. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system. Audiology & Neuro-otology, 10: 105–116. doi: 10.1159/000083366
  • Carvalho, B., Hamerschmidt, R., Wiemes, G. 2015. Intraoperative neural response telemetry and neural recovery function: a comparative study between adults and children. International Archives Otorhinolaryngologica, 19: 10–15.
  • Dillier, N., Lai, W.K., Almqvist, B., Frohne, C., Müller-Deile, J., Stecker, M. et al. 2002. Measurement of the electrically evoked compound action potential via a neural response telemetry system. The Annals of Otology, Rhinology, and Laryngology, 111: 407–414. doi: 10.1177/000348940211100505
  • Fisher, R.A. 1924. The conditions under which χ2 measures the discrepancey between observation and hypothesis. Journal of the Royal Statistical Society, 87: 442–450. Available from: http://www.jstor.org/stable/2341149 doi: 10.2307/2341292
  • Franck, K.H., Norton, S.J. 2001. Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device. Ear and Hearing, 22: 289–299. doi: 10.1097/00003446-200108000-00004
  • Gärtner, L., Lenarz, T., Joseph, G., Büchner, A. 2010. Clinical use of a system for the automated recording and analysis of electrically evoked compound action potentials (ECAPs) in cochlear implant patients. Acta Oto-laryngologica, 130: 724–732. doi: 10.3109/00016480903380539
  • Glassman, E.K., Hughes, M.L. 2013. Determining electrically evoked compound action potential thresholds: a comparison of computer versus human analysis methods. Ear and Hearing, 34: 96–109. doi: 10.1097/AUD.0b013e3182650abd
  • Hoth, S. 2013. Die Steigung der Diskriminationsfunktion als universelles Maß zur Beurteilung der Güte von Methoden der objektiven Schwellenbestimmung. Zeitschr Audiol, 52: 61–69.
  • Hughes, M.L., Abbas, P.J., Brown, C.J., Gantz, B.J. 2000a. Using electrically evoked compound action potential thresholds to facilitate creating MAPs for children with the Nucleus CI24M. Advances in Oto-rhino-laryngology, 57: 260–265. doi: 10.1159/000059125
  • Hughes, M.L., Brown, C.J., Abbas, P.J., Wolaver, A.A., Gervais, J.P. 2000b. Comparison of EAP thresholds with MAP levels in the nucleus 24 cochlear implant: data from children. Journal of the American Audiology Society, 21: 164–174.
  • Jeon, E.K., Brown, C.J., Etler, C.P., O’Brien, S., Chiou, L.-K., Abbas, P.J. 2010. Comparison of electrically evoked compound action potential thresholds and loudness estimates for the stimuli used to program the Advanced Bionics cochlear implant. Journal of the American Academy of Audiology, 21: 16–27. doi: 10.3766/jaaa.21.1.3
  • Ji, F., Liu, K., Yang, S.-m. 2015. Clinical application of electrically evoked compound action potentials. Journal of Otology. Available from: http://www.sciencedirect.com/science/article/pii/S1672293014000038
  • Lai, W.K., Dillier, N. 2000. A simple two-component model of the electrically evoked compound action potential in the human cochlea. Audiology & Neuro-otology, 5: 333–345. doi: 10.1159/000013899
  • Lai, W.K., Dillier, N. 2007. Comparing neural response telemetry amplitude growth functions with loudness growth functions: preliminary results. Ear and Hearing, 28: 42S–45S. doi: 10.1097/AUD.0b013e3180315104
  • Leake, P.A., Stakhovskaya, O., Hradek, G.T., Hetherington, A.M. 2008. Factors influencing neurotrophic effects of electrical stimulation in the deafened developing auditory system. Hearing Research, 242(1–2): 86–99. doi: 10.1016/j.heares.2008.06.002
  • McKay, C.M., Fewster, L., Dawson, P. 2005. A different approach to using neural response telemetry for automated cochlear implant processor programming. Ear and Hearing, 26: 38S–44S. doi: 10.1097/00003446-200508001-00006
  • Miller, C.A., Abbas, P.J., Robinson, B.K. 1994. The use of long-duration current pulses to assess nerve survival. Hearing Research, 78: 11–26. doi: 10.1016/0378-5955(94)90039-6
  • Miller, C.A., Abbas, P.J., Rubinstein, J.T., Robinson, B.K., Matsuoka, A.J., Woodworth, G. 1998. Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation. Hearing Research, 119: 142–154. doi: 10.1016/S0378-5955(98)00046-X
  • Miller, C.A., Abbas, P.J., Brown, C.J. 2000. An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential. Ear and Hearing, 21: 280–290. doi: 10.1097/00003446-200008000-00003
  • Miller, C.A., Brown, C.J., Abbas, P.J., Chi, S.-L. 2008. The clinical application of potentials evoked from the peripheral auditory system. Hearing Research, 242: 184–197. doi: 10.1016/j.heares.2008.04.005
  • Muhaimeed, H.A., Anazy, F.A., Hamed, O., Shubair, E. 2010. Correlation between NRT measurement level and behavioral levels in pediatrics cochlear implant patients. International Journal of Pediatric Otorhinolaryngology, 74: 356–360. doi: 10.1016/j.ijporl.2009.12.017
  • Parkinson, A.J., Arcaroli, J., Staller, S.J., Arndt, P.L., Cosgriff, A., Ebinger, K. 2002. The nucleus 24 contour cochlear implant system: adult clinical trial results. Ear and Hearing, 23(1 Suppl.): 41S–48S. doi: 10.1097/00003446-200202001-00005
  • Polak, M., Hodges, A., Balkany, T. 2005. ECAP, ESR and subjective levels for two different nucleus 24 electrode arrays. Otology & Neurotology, 26(4): 639–645. doi: 10.1097/01.mao.0000178145.14010.25
  • Potts, L.G., Skinner, M.W., Gotter, B.D., Strube, M.J., Brenner, C.A. 2007. Relation between neural response telemetry thresholds, T- and C-levels, and loudness judgments in 12 adult nucleus 24 cochlear implant recipients. Ear and Hearing, 28: 495–511. doi: 10.1097/AUD.0b013e31806dc16e
  • Ramekers, D., Versnel, H., Strahl, S.B., Klis, S.F., Grolman, W. 2015. Temporary neurotrophin treatment prevents deafness-induced auditory nerve degeneration and preserves function. Journal of Neuroscience, 35: 12331–12345. doi: 10.1523/JNEUROSCI.0096-15.2015
  • Smith, L., Simmons, F.B. 1983. Estimating eighth nerve survival by electrical stimulation. The Annals of Otology, Rhinology, and aryngology, 92: 19–23. doi: 10.1177/000348948309200105
  • Smoorenburg, G.F., Willeboer, C., van Dijk, J.E. 2002. Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiology & Neuro-otology, 7(6): 335–347. doi: 10.1159/000066154
  • Telmesani, L.M., Said, N.M. 2016. Electrically evoked compound action potential (ECAP) in cochlear implant children: changes in auditory nerve response in first year of cochlear implant use. International Journal of Pediatric Otorhinolaryngology, 82: 28–33. doi:10.1016/j.ijporl.2015.12.027 doi: 10.1016/j.ijporl.2015.12.027
  • Vaerenberg, B., Smits, C., De Ceulaer, G., Zir, E., Harman, S., Jaspers, N. et al. 2014. Cochlear implant programming: a global survey on the state of the art. The Scientific World Journal, 2014: 501738.
  • Vlahović, S., Sindija, B., Aras, I., Glunčić, M., Trotić, R. 2012. Differences between electrically evoked compound action potential (ECAP) and behavioral measures in children with cochlear implants operated in the school age vs. operated in the first years of life. International Journal of Pediatric Otorhinolaryngology, 76: 731–739. doi: 10.1016/j.ijporl.2012.02.037
  • Walkowiak, A., Lorens, A., Polak, M., Kostek, B., Skarzynski, H., Szkielkowska, A. et al. 2011. Evoked stapedius reflex and compound action potential thresholds versus most comfortable loudness level: assessment of their relation for charge-based fitting strategies in implant users. ORL: Journal for Oto-rhino-laryngology and its Related Specialties, 73(4): 189–195. doi: 10.1159/000326892
  • Whiten, D.M. 2007. Electro-anatomical models of the cochlear implant. Harvard University – MIT Division of Health Sciences and Technology. Cambridge, MA: Massachusetts Institute of Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.