419
Views
22
CrossRef citations to date
0
Altmetric
Original scientific papers

Rheological modelling of asphalt materials properties at low temperatures: from time domain to frequency domain

, &
Pages 810-830 | Published online: 22 Jul 2013

References

  • AASHTO M 320-05 (2006). Performance-graded asphalt binder, Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 313-05 (2006). Determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR), Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 322-02 (2006). Determining the creep compliance and strength of hot-mix asphalt (HMA) using the indirect tensile test (IDT) device, Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 313-06 (2006). Determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR), Washington, DC: American Association of State Highway and Transportation Officials.
  • ASTM Designation: D7552-09 (2009). Standard test method for determining the complex shear modulus, G*, of bituminous mixtures using dynamic shear rheometer, West Conshohocken, PA: American Society for Testing and Materials International.
  • Berryman, J. G. (1985). Measurement of spatial correlation functions using image processing techniques. Journal of Applied Physics, 57, 2374–2384. doi:10.1063/1.334346
  • Cannone Falchetto, A., Marasteanu, M., & Di Benedetto, H. (2011). Analogical based approach to forward and inverse problems for asphalt materials characterization at low temperatures. Journal the Association of Asphalt Paving Technologists (AAPT), 80, 549–581.
  • Cannone Falchetto, A., Montepara, A., Tebaldi, G., & Marasteanu, M. (2013). Microstructural characterization of asphalt mixtures containing recycled asphalt materials. Journal of Materials in Civil Engineering, American Society of Civil Engineers (ASCE), 25(1), 45–53. doi:10.1061/(ASCE)MT.1943-5533.0000544
  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics. Journal of Chemical Physics, 9, 341–351. doi:10.1063/1.1750906
  • Delaporte, B., Di Benedetto, H., Chaverot, P., & Gauthier, G. (2009). Linear viscoelastic properties of bituminous materials including new products made with ultrafine particles. Road Materials and Pavement Design, 10(1), 7–38. doi:10.1080/14680629.2009.9690180
  • Di Benedetto, H., Olard, F., Sauzéat, C., & Delaporte, B. (2004). Linear viscoelastic behavior of bituminous materials: From binders to mixes. Road Material and Pavement Design, 5 (Special Issue), 163–202. doi:10.1080/14680629.2004.9689992
  • Findley, N. W., Lai, S. J., & Onaran, K. (1976). Creep and relaxation of nonlinear viscoelastic materials – with an introduction to linear viscoelasticity. Amsterdam: North-Holland.
  • Herbert, W. M., Andreas, J., Elisabeth, G. A. & Josef, E. (2008). Experimental identification of viscoelastic properties of rubber compounds by means of torsional rheometry. Meccanica, 43(3), 327–337. doi:10.1007/s11012-007-9097-z
  • Huet, C. (1963). Etude par une méthode d'impédance du comportement viscoélastique des matériaux hydrocarbonés. Thèse de doctorat d'ingénieur, Faculté des Sciences de l'Université de Paris, 69 page [In French].
  • Huet, C. (1999). Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mechanics of Materials, 31(12), 787–829. doi:10.1016/S0167-6636(99)00038-1
  • Marasteanu, M., Velasquez, R., Cannone Falchetto, A., & Zofka, A. (2009). Development of a simple test to determine the low temperature creep compliance of asphalt mixture (IDEA Program Final Report NCHRP 133). Washington, DC: Transportation Research Board of the National Academies.
  • Moon, K. H. (2010). Comparison of thermal stresses calculated from asphalt binder and asphalt mixture creep compliance data (MS Thesis). University of Minnesota, Twin Cities.
  • Moon, K. H., Marasteanu, M. O., & Turos, M. (2013). Comparison of thermal stresses calculated from asphalt binder and asphalt mixture creep tests. Journal of Materials in Civil Engineering, American Society of Civil Engineers (ASCE). http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29MT.1943-5533.0000651
  • Olard, F. (2003). Comportement thermomécanique des enrobés bitumineux à basses températures. [Relations entre les propriétés du liant et de l'enrobé] (PhD Thesis). ENTPE-INSA Lyon [In French].
  • Olard, F., & Di Benedetto, H. (2003). General “2S2P1D” model and relation between the linear viscoelastic behaviors of bituminous binders and mixes. Road Materials and Pavement Design, 4(2), 185–224.
  • Pouget, S., Sauzéat, C., Di Benedetto, H., Olard, F. (2010). From the behaviour of constituent materials to the calculation and design of orthotropic steel bridge structures. Road Materials and Pavement Design, 11(Special Issue EATA) 111–144. doi:10.1080/14680629.2010.9690329
  • Ruddock, N., James, P. W., & Jones, T. E. R. (1993). Modeling the liner viscoelasticity of unfilled and carbon black loaded elastomers. Rehologica Acta, 32(3), 286–292. doi:10.1007/BF00434193
  • Sohm, J., Gabet, T., Hornych, P., Piau, J. M., & Di Benedetto, H. (2012). Creep tests on bituminous mixtures and modeling. Road Materials and Pavement Design, 13(4), 832–849. doi:10.1080/14680629.2012.735795
  • Tiouajni, S., Di Benedetto, H., Sauzéat, C., & Pouget, S. (2011). Approximation of linear viscoelastic model by generalized Kelvin Voigt or generalized Maxwell models: Application to bituminous materials in the 3 dimensional case. Road Materials and Pavement Design, 12(4), 897–930.
  • Torquato, S. (2002). Random heterogeneous materials. New York, NY: Springer-Verlag.
  • Wiechert, E. (1893). Gesetze der elastischen Nachwirkung für constante Temperatur I. Wiedemann's Annals of Physical Chemistry, 50, 336–348. [In German].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.