1,079
Views
98
CrossRef citations to date
0
Altmetric
Original Articles

Laboratory investigation of hot mix asphalt containing waste materials

, &
Pages 713-729 | Received 25 Sep 2015, Accepted 08 May 2016, Published online: 31 May 2016

References

  • Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1), 300–305. doi:10.1016/j.jhazmat.2008.09.105
  • Akbulut, H., Gurer, C., & Cetin, S. (2011). Use of volcanic aggregates in asphalt pavement mixes. Proceedings of the Institution of Civil Engineers – Transport, 164(2), 111–123. doi:10.1680/tran.2011.164.2.111
  • Akbulut, H., Gurer, C., Cetin, S., & Elmacı, A. (2012). Investigation of using granite sludge as filler in bituminous hot mixtures. Construction and Building Materials, 36, 430–436. doi:10.1016/j.conbuildmat.2012.04.069 doi: 10.1016/j.conbuildmat.2012.04.069
  • Ali, N., Chan, J. S., Simms, S., Bushman, R., & Bergman, A. T. (1996). Mechanistic evaluation of fly ash asphalt concrete mixtures. Journal of Materials in Civil Engineering, 8(1), 19–25. doi:10.1061/(ASCE)0899-1561 doi: 10.1061/(ASCE)0899-1561(1996)8:1(19)
  • American Association of State Highway and Transportation Officials. (1993). Guide for design of pavement structures. New York, NY: Author.
  • Arabani, M. (2011). Effect of glass cullet on the improvement of the dynamic behavior of asphalt concrete. Construction and Building Materials, 25(3), 1181–1185. doi:10.1016/j.conbuildmat.2010.09.043
  • Arabani, M., & Azarhoosh, A. R. (2012). The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures. Construction and Building Materials, 35(10), 1–7. doi:10.1016/j.conbuildmat.2012.02.036
  • Arabani, M., Babamohammadi, S., & Azarhoosh, A. R. (2014). Experimental investigation of seashells used as filler in hot mix asphalt. International Journal of Pavement Engineering, 16(6), 502–509. doi:10.1080/10298436.2014.943132
  • Arabani, M., Haghi, A. K., Mirabdolazimi, S. M., & Haghgoo, M. (2006). Increment of fatigue resistance of HMA by waste tire thread. In 7th International congress on civil engineering, Tehran, Iran.
  • Arabani, M., Mirabdolazimi, S. M., & Sasani, A. R. (2010). The effect of waste tire thread mesh on the dynamic behaviour of asphalt mixtures. Construction and Building Materials, 24, 1060–1068. doi:10.1016/j.conbuildmat.2009.11.011
  • Artamendi, I., & Khalid, H. (2013). Different approaches to depict fatigue of bituminous materials. In ECF15, Stockholm 2004.
  • Asphalt Institute. (1993). Mix design methods for asphalt concrete and other hot-mix types (Manual Series No. 2 (MS-2)) (6th ed.). Lexington, KY: Author.
  • ASTM. (2000). Road and paving materials (Vol. 04.03). West Conshohocken, PA: Annual Book of ASTM Standards.
  • Chandra, S., Kumar, P., & Feyissa, B. A. (2002). Use of marble dust in road construction. Road Materials and Pavement Design, 3(3), 317–330. doi:10.1080/14680629.2002.9689928
  • Chen, M., Lin, J., Wu, S., & Liu, C. (2011). Utilization of recycled waste brick powder as alternative filler in asphalt mixture. Construction and Building Materials, 25, 1532–1536. doi:10.1016/j.conbuildmat.2010.08.005
  • Chen, M., Zheng, J., Li, F., Wu, S., Lin, J., & Wan, L. (2015). Thermal performances of asphalt mixtures using recycled tyre rubber as mineral filler. Road Materials and Pavement Design, 16(2), 379–391. doi:10.1080/14680629.2014.1002524
  • Chiangmai, C. N. (2010). Fatigue-fracture relation on asphalt concrete mixtures (Thesis). University of Illinois at Urbana-Champaign, Urbana.
  • Chindaprasirt, P., Rukzon, S., & Sirivivatnanon, V. (2008). Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar. Construction and Building Materials, 22(8), 1701–1707. doi:10.1016/j.conbuildmat.2007.06.002
  • Code-234. (2011). Iran highway asphalt paving code. Tehran: The Ministry of Road and Urban Development, Research and Education Center, Publication Number 234.
  • Delaporte, B., Di Benedetto, H., Chaverot, P., & Gauthier, G. (2009). Linear viscoelastic properties of bituminous materials including new products made with ultrafine particles. Road Materials and Pavement Design, 10(1), 7–38. doi:10.1080/14680629.2009.9690180
  • Food and Agriculture Organization of the United Nations. (2007). Retrieved from http://www.fao.org
  • Ganesan, K., Rajagopal, K., & Thangavel, K. (2008). Rice husk ash blended cement assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials, 22, 1675–1683. doi:10.1016/j.conbuildmat.2007.06.011
  • Gómez-Meijide, B., & Pérez, I. (2014). Effects of the use of construction and demolition waste aggregates in cold asphalt mixtures. Construction and Building Materials, 51, 267–277. doi:10.1016/j.conbuildmat.2013.10.096
  • Hesami, E. (2014). Characterisation and modelling of asphalt mastic and their effect on workability (Thesis Doctor of Philosophy). KTH Royal Institute of Technology, Stockholm, Sweden.
  • Hinislioğlu, S., & Ağar, E. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, 58, 267–271. doi:10.1016/S0167-577X(03)00458-0
  • Huang, B., Dong, Q., & Burdette, E. G. (2009). Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete. Construction and Building Materials, 23(12), 3451–3456. doi:10.1016/j.conbuildmat.2009.08.024
  • Huang, B., Li, G., Pang, S., & Eggers, J. (2004). Investigation into waste tire rubber filled concrete. Journal of Materials in Civil Engineering, 16(3), 187–194. doi:10.1061/(ASCE)0899-1561(2004)16:3(187)
  • Huang, B., Shu, X., & Vukosavljevic, D. (2011). Laboratory investigation of cracking resistance of hot-mix asphalt containing screened reclaimed asphalt pavement. Journal of Materials in Civil Engineering, 23(11), 1535–1543. doi:10.1061/(ASCE)MT.1943-5533.0000223
  • Hudson, S. B., & Davis, R. L. (1965). Relationship of aggregate voidage to gradation. Journal of the Association of Asphalt Paving Technologists, 34, 574–593.
  • Jiménez, F., Recasens, R., & Martínez, A. (2008). Effect of filler nature and content on the behaviour of bituminous mastics. Road Materials and Pavement Design, 9(1), 417–431. doi:10.1080/14680629.2008.9690177 doi: 10.1080/14680629.2008.9690177
  • Kalantar, Z. N., Karim, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33(8), 55–62. doi:10.1016/j.conbuildmat.2012.01.009 doi: 10.1016/j.conbuildmat.2012.01.009
  • Kandhal, P. S. (1993). Waste materials in hot mix asphalt-An overview. In Waller H. Fred (Ed.), Use of waste materials in hot-mix asphalt. ASTM STP 1193 (pp. 3–16). Philadelphia, PA: American Society for Testing and Material.
  • Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement and Concrete Research, 35, 763–769. doi:10.1016/j.cemconres.2004.06.017
  • Kim, Y. R., Little, D., & Song, I. (2003). Effect of mineral fillers on fatigue resistance and fundamental material characteristics: mechanistic evaluation. Journal of the Transportation Research Board, 1832, 1–8. doi:10.3141/1832-01
  • Kok, B. V., & Yilmaz, M. (2009). The effects of using lime and styrene–butadiene–styrene on moisture sensitivity resistance of hot mix asphalt. Construction and Building Materials, 23(5), 1999–2006. doi:10.1016/j.conbuildmat.2008.08.019
  • Lavin, P. G. (2003). Asphalt pavements, a practical guide to design, production, and maintenance for engineers and architects. London: Taylor & Francis Group.
  • Lesueur, D. (2009). The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82. doi:10.1016/j.cis.2008.08.011
  • Liao, M. (2007). Small and large strain rheological and fatigue characterization of bitumen-filler mastics (Thesis Doctor of Philosophy). University of Nottingham, United Kingdom.
  • Lo Presti, D., & Airey, G. (2013). Tyre rubber-modified bitumens development: The effect of varying processing conditions. Road Materials and Pavement Design, 14(4), 888–900. doi:10.1080/14680629.2013.837837
  • Mahrez, A., & Karim, M. R. (2010). Fatigue characteristics of stone mastic asphalt mix reinforced with fiber glass. International Journal of the Physical Sciences, 5(12), 1840–1847. Retrieved from http://eprints.um.edu.my/8789/1/Fatigue_characteristics_of_stone_mastic_asphalt_mix_reinforced_with_fiber_glass.pdfeprints.um.edu.my/8789/1/Fatigue_characteristics_of_stone_mastic_asphalt_mix_reinforced_with_fiber_glass.pdf
  • Medani, T. O., & Molenaar, A. A. A. (2000). Estimation of fatigue characteristics of asphaltic mixes using simple tests. Heron, 45(3), 155–166.
  • Melotti, R., Santagata, E., Bassani, M., Salvo, M., & Rizzo, S. (2013). A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures. Construction and Building Materials, 33, 1906–1917. doi:10.1016/j.wasman.2013.05.015
  • Memon, S. A., Sheikh, M. A., & Akbar, H. (2011). Utilization of rice husk ash as viscosity modifying agent in self compacting concrete. Construction and Building Materials, 25, 1044–1048. doi:10.1016/j.conbuildmat.2010.06.074
  • Meor, O. H., & Teoh, C. Y. (2008). Effects of temperature on resilient modulus of dense asphalt mixtures incorporating steel slag subjected to short term oven ageing. World Academy of Science, Engineering and Technology, 2(10). Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CBwQFjAAahUKEwiH__zFmY7IAhXHuRQKHdkdCQ8&url=http%3A%2F%2Fwaset.org%2Fpublications%2F8070%2Feffects-of-temperature-on-resilient-modulus-of-dense-asphalt-mixtures-incorporating-steel-slag-subjected-to-short-term-oven-ageing&usg=AFQjCNE6KPjThigIdzz7dgHtcOO3HbrBSA&bvm=bv.103388427,d.bGg&cad=rja
  • Metha, P. K. (1977). Properties of blended cements made from rice husk ash. ACI Material Journal, 74(9), 440–442. Retrieved from https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=11022
  • Moghadas Nejad, F., Azarhoosh, A., & Hamedi, G. H. (2014). Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt – A laboratory study. Road Materials and Pavement Design, 15(3), 746–756. doi:10.1080/14680629.2013.876443
  • Moghaddam, T. B., Karim, M. R., & Syammaun, T. (2012). Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Construction and Building Materials, 34, 236–242. doi:10.1016/j.conbuildmat.2012.02.054
  • Moreno-navarro, F., Sol, M., Rubio-Gamez, C., & Ramirez, A. (2013). Reuse of thermal power plant slag in hot bituminous mixes. Construction and Building Materials, 49, 144–150. doi:10.1016/j.conbuildmat.2013.07.090 doi: 10.1016/j.conbuildmat.2013.07.090
  • Nair, D. G., Fraaij, A., Klaassen, A. A. K., & Kentgens, A. P. M. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861–869. doi:10.1016/j.cemconres.2007.10.004
  • Nehdi, M., Duquette, J., & El Damatty, A. (2003). Performance of rice husk ash produced using a new technology as a mineral admixture in concrete. Cement and Concrete Research, 33(8), 1203–1210.doi:10.1016/S0008-8846(03)00038-3
  • Nejad, F. M., Aflaki, E., & Mohammadi, M. A. (2010). Fatigue behavior of SMA and HMA. Construction and Building Materials, 24(7), 1158–1165. doi:10.1016/j.conbuildmat.2009.12.025
  • O’Farrell, M., Wild, S., & Sabir, B. B. (2001). Pore size distribution and compressive strength of waste clay brick mortar. Cement and Concrete Composites, 23, 81–91. doi:10.1016/S0958-9465(00)00070-6
  • Padmini, A. K., Ramamurthy, K., & Matthews, M. S. (2002). Relative moisture movement through recycled aggregate concrete. Cement and Concrete Research, 54, 377–384. doi:10.1680/macr.54.5.377.38815
  • Read, J., & Whiteoak, D. (2003). The shell bitumen handbook (5th ed.). London: Shell Bitumen, Thomas Telford.
  • Roberts, F., Kandhal, P., Brown, E. R., Lee, D. Y., & Kennedy, T. (1996). Hot mix asphalt materials, mixture design, and construction (2nd ed.). Lanham, MD: NAPA Education Foundation.
  • Sarang, G., Lekha, B. M., Krishna, G., & Ravi Shankar, A. U. (2015). Comparison of Stone Matrix Asphalt mixtures with polymer-modified bitumen and shredded waste plastics. Road Materials and Pavement Design. doi:doi:10.1080/14680629.2015.1124799
  • Saraswathy, V., & Song, H. (2007). Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 21(8), 1779–1784. doi:10.1016/j.conbuildmat.2006.05.037
  • Shafabakhsh, G. H., & Sajed, Y. (2014). Investigation of dynamic behavior of hot mix asphalt containing waste materials. Case Studies in Construction Materials, 1, 96–103. doi:10.1016/j.cscm.2014.05.002
  • Shashidhar, N., & Romero, P. (1998). Factors affecting the stiffening potential of mineral fillers. Journal of the Transportation Research Board, 1638, 94–100. doi:10.3141/1638-11
  • Shu, X., Huang, B., & Vukosavljevic, D. (2008). Laboratory evaluation of fatigue characteristics of recycled asphalt mixture. Construction and Building Materials, 22(7), 1323–1330. 10.1016/j.conbuildmat.2007.04.019 doi: 10.1016/j.conbuildmat.2007.04.019
  • Suhaibani, A., Mudaiheem, J., & Fozan, F. (1992). Effect of filler type and content on properties of asphalt concrete, effect of aggregates and mineral fillers on Asphalt mixture performance. In R. C. Meininger (Ed.), ASTM STP 1147. Philadelphia, PA: American Society for Testing and Material. Retrieved from http://trid.trb.org/view.aspx?id=382934
  • Tapsoba, N., Sauzéat, C., Di Benedetto, H., Baaj, H., & Ech, M. (2014). Behaviour of asphalt mixtures containing reclaimed asphalt pavement and asphalt shingle. Road Materials and Pavement Design, 15(2), 330–347. doi:10.1080/14680629.2013.871091
  • Tayebali, A., Malpass, G., & Khosla, N. (1998). Effect of mineral filler type and amount on design and performance of asphalt concrete mixtures. Journal of the Transportation Research Board, 1609, 36–43. doi:10.3141/1609-05
  • Taylor, R. (2007). Surface interactions between bitumen and mineral fillers and their effects on the rheology of bitumen-filler mastics (Thesis Doctor of Philosophy). University of Nottingham, UK.
  • Thom, N. (2006). Asphalt cracking: A Nottingham perspective. Nottingham: University of Nottingham, Nottingham Center for Pavement Engineering.
  • Uzun, I., & Terzi, S. (2012). Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Construction and Building Materials, 31, 284–288. doi:10.1016/j.conbuildmat.2011.12.093
  • Vivar, E. D. P., & Haddock, J. E. (2006). HMA pavement performance and durability. Washington, DC: US Department of Transportation FHWA/IN/JTRP-2005/14. Retrieved from http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1739&context=jtrp
  • Whiteoak, D. (1991). The shell bitumen handbook. London: Shell bitumen.
  • Wu, S., Yang, W., & Xue, Y. (2004). Preparation and properties of glass–asphalt concrete. Wuham: Key Laboratory for Silicate Materials Science and Engineering of Ministry of Education, Wuham University of Technology.
  • Wu, S., Zhong, J., Zhu, J., & Wang, D. (2013). Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Materials and Pavement Design, 14(3), 679–688. doi:10.1080/14680629.2013.779304
  • Wu, S., Zhu, J., Zhong, J., & Wang, D. (2011). Experimental investigation on related properties of asphalt mastic containing recycled brick powder. Construction and Building Materials, 25(6), 2883–2887. doi:10.1016/j.conbuildmat.2010.12.040
  • Zhang, M.-H., & Malhotra, M. (1996). High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Material Journal, 93, 629–636. Retrieved from https://www.concrete.org/publications/internationalconcreteabstractsportal?m=details&i=9870
  • Zoorob, S. E., & Suparma, L. B. (2000). Laboratory design and investigation of the properties of continuously graded asphaltic concrete containing recycled plastics aggregate replacement (plastiphalt). Cement and Concrete Composites, 22, 233–242. doi:10.1016/S0958-9465(00)00026-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.