1,044
Views
30
CrossRef citations to date
0
Altmetric
Scientific papers

Impact of compaction method on mechanical characteristics of unbound granular recycled materials

, , &
Pages 912-934 | Received 04 May 2016, Accepted 06 Jan 2017, Published online: 02 Feb 2017

References

  • AASHTO-T307. (2007). Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. Washington, DC: American Association of State Highway and Transportation Officials.
  • Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils. Géotechnique, 40(3), 405–430. doi: 10.1680/geot.1990.40.3.405
  • Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Suksiripattanapong, C., & Prongmanee, N. (2014). Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 58, 245–257. doi: 10.1016/j.conbuildmat.2014.02.025
  • Arulrajah, A., Piratheepan, J., Disfani, M. M., & Bo, M. W. (2013). Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. Journal of Materials in Civil Engineering, 25(8), 1077–1088. doi: 10.1061/(ASCE)MT.1943-5533.0000652
  • Arya, L. M., & Paris, J. F. (1981). A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Society of America Journal, 45(6), 1023–1030. doi: 10.2136/sssaj1981.03615995004500060004x
  • Asmani, D. M. Y., Hafez, M. A., & Nurbaya, S. (2011). Static laboratory compaction method. Electronic Journal of Geotechnical Engineering, 16 M, 1583–1593.
  • Asmani, D. M. Y., Hafez, M. A., & Shakri, M. S. (2013). Comparison between static and dynamic compaction for California Bearing Ratio (CBR). Electronic Journal of Geotechnical Engineering, 18 Y, 5857–5869.
  • ASTM-D1557. (2012). Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). West Conshohocken, PA: ASTM International.
  • ASTM-D2435. (2011). Standard test methods for one-dimensional consolidation properties of soils using incremental loading. West Conshohocken, PA: ASTM International.
  • Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. P. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 40(6), 1104–1122. doi: 10.1139/t03-054
  • Azam, A. M., & Cameron, D. A. (2013). Geotechnical properties of blends of recycled clay masonry and recycled concrete aggregates in unbound pavement construction. Journal of Materials in Civil Engineering, 25(6), 788–798. doi: 10.1061/(asce)mt.1943-5533.0000634
  • Azam, A. M., Cameron, D. A., & Rahman, M. M. (2013). Model for prediction of resilient modulus incorporating matric suction for recycled unbound granular materials. Canadian Geotechnical Journal, 50(11), 1143–1158. doi: 10.1139/cgj-2012-0406
  • Ba, M., Nokkaew, K., Fall, M., & Tinjum, J. M. (2013). Effect of matric suction on resilient modulus of compacted aggregate base courses. Geotechnical and Geological Engineering, 31(5), 1497–1510. doi: 10.1007/s10706-013-9674-y
  • Barksdale, R. D., & Itani, S. Y. (1989). Influence of aggregate shape on base behavior. Transportation Research Record, 1227, 173–182.
  • Browne, M. (2006). Feasibility of using a gyratory compactor to determine compaction characteristics of soil ( Master of Science Thesis). Montana State University, Bozeman, MT.
  • Cameron, D. A. (2014). Expansive clays, collapsing sands, unbound pavement materials and unsaturated soil theory. Paper presented at the Proceedings of the 6th International Conference on Unsaturated Soils (UNSAT 2014). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84901621067&partnerID=40&md5=4ddcadde18aa28b0c81e242735824486
  • Casagrande, A. (1936). The determination of the pre-consolidation load and its practical significance. Paper presented at the Proceedings of the International Conference on Soil Mechanics and Foundation Engineering. Cambridge, MA: Harvard University Press.
  • Crispim, F. A., de Lima, D. C., Schaefer, C. E. G. R., de Carvalho Silva, C. H., de Carvalho, C. A. B., de Almeida, … Brandão, E. H. (2011). The influence of laboratory compaction methods on soil structure: Mechanical and micromorphological analyses. Soils and Rocks, 34(1), 91–98.
  • Das, B. M. (2010). Principles of Geotechnical Engineering (7th ed.). Stamford, CT: Cengage Learning.
  • Feeser, V., & Bruckmann, W. (1995). Data report: Oedometer and triaxial tests of sediment from the Chile triple junction. Paper presented at the Proceedings of the Ocean Drilling Program. College Station, TX: Scientific Results.
  • Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. doi: 10.1139/t94-061
  • Hafez, M. A., Asmani, D. M. Y., & Nurbaya, S. (2010). Comparison between static and dynamic laboratory compaction methods. Electronic Journal of Geotechnical Engineering, 15, 1641–1650.
  • Hicks, R. G., & Monismith, C. L. (1971). Factors influencing the resilient response of granular materials. Highway Research Record, 34(345), 15–31.
  • Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (1981). An introduction to Geotechnical Engineering (2nd ed.). Upper Saddle River, NJ: Pearson Education.
  • Kouassi, P., Breysse, D., Girard, H., & Poulain, D. (2000). A new technique of kneading compaction in the laboratory. Geotechnical Testing Journal, 23(1), 72–82. doi: 10.1520/GTJ11125J
  • Lekarp, F., Isacsson, U., & Dawson, A. (2000). State of the art. I: Resilient response of unbound aggregates. Journal of Transportation Engineering, 126(1), 66–75. doi: 10.1061/(ASCE)0733-947X(2000)126:1(66)
  • Likos, W. J., & Jaafar, R. (2013). Pore-scale model for water retention and fluid partitioning of partially saturated granular soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(5), 724–737. doi: 10.1061/(ASCE)GT.1943-5606.0000811
  • Piratheepan, J., Gnanendran, C., & Lo, S. (2010). Characterization of cementitiously stabilized granular materials for pavement design using unconfined compression and IDT testings with internal displacement measurements. Journal of Materials in Civil Engineering, 22(5), 495–505. doi: 10.1061/(ASCE)MT.1943-5533.0000051
  • Puppala, A. J., Hoyos, L. R., & Potturi, A. K. (2011). Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. Journal of Materials in Civil Engineering, 23(7), 990–998. doi: 10.1061/(ASCE)MT.1943-5533.0000268
  • Rahardjo, H., Satyanaga, A., Leong, E. C., & Wang, J. Y. (2013). Unsaturated properties of recycled concrete aggregate and reclaimed asphalt pavement. Engineering Geology, 161, 44–54. doi: 10.1016/j.enggeo.2013.04.008
  • Reddy, B. V. V., & Jagadish, K. S. (1993). The static compaction of soils. Géotechnique, 43(2), 337–341. doi: 10.1680/geot.1993.43.2.337
  • Santamarina, J., & Cho, G. (2004). Soil behaviour: The role of particle shape. Paper presented at the Advances in geotechnical engineering: The Skempton conference.
  • Thom, N. (2008). Principle of Pavement Engineering. London: Thomas Telford.
  • Yang, S.-R., Lin, H.-D., Kung, J. H., & Huang, W.-H. (2008). Suction-controlled laboratory test on resilient modulus of unsaturated compacted subgrade soils. Journal of Geotechnical and Geoenvironmental Engineering, 134(9), 1375–1384. doi: 10.1061/(ASCE)1090-0241(2008)134:9(1375)
  • Yideti, T. F., Birgisson, B., & Jelagin, D. (2014). Influence of aggregate packing structure on California bearing ratio values of unbound granular materials. Road Materials and Pavement Design, 15(1), 102–113. doi: 10.1080/14680629.2013.863160
  • Yideti, T. F., Birgisson, B., Jelagin, D., & Guarin, A. (2013). Packing theory-based framework to evaluate permanent deformation of unbound granular materials. International Journal of Pavement Engineering, 14(3), 309–320. doi: 10.1080/10298436.2012.736620
  • Yideti, T. F., Birgisson, B., Jelagin, D., & Guarin, A. (2014). Packing theory-based framework for evaluating resilient modulus of unbound granular materials. International Journal of Pavement Engineering, 15(8), 689–697. doi: 10.1080/10298436.2013.857772
  • Zhang, Y. D., & Buscarnera, G. (2015). Prediction of breakage-induced couplings in unsaturated granular soils. Géotechnique, 65(2), 135–140. doi: 10.1680/geot.14.P.086

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.