747
Views
20
CrossRef citations to date
0
Altmetric
Scientific papers

Comparisons of asphalt pavement responses computed using layer properties backcalculated from dynamic and static approaches

, , , &
Pages 1114-1130 | Received 07 Sep 2017, Accepted 26 Jan 2018, Published online: 08 Feb 2018

References

  • Al-Khoury, R., Scarpas, A., Kasbergen, C., & Blaauwendraad, J. (2001). Spectral element technique for efficient parameter identification of layered media. I. Forward calculation. International Journal of Solids and Structures, 38(9), 1605–1623. doi: 10.1016/S0020-7683(00)00112-8
  • Al-Khoury, R., Scarpas, A., Kasbergen, C., & Blaauwendraad, J. (2002). Spectral element technique for efficient parameter identification of layered media. Part III: Viscoelastic aspects. International Journal of Solids and Structures, 39(8), 2189–2201. doi: 10.1016/S0020-7683(02)00079-3
  • Al-Qadi, I. L., & Wang, H. (2009). Full-depth pavement responses under various tire configurations: Accelerated pavement testing and finite element modeling. Journal of the Association of Asphalt Paving Technologists, 78, 721–759.
  • Anderson, M. (1989). A data base method for backcalculation of composite pavement layer moduli. STP 1026. In A. J. Bush III & G. Y. Baladi (Eds.), Nondestructive testing of pavements and backcalculation of moduli (pp. 201–216). West Conshohocken, PA: ASTM.
  • Applied Research Associates (ARA). (2004). Guide for mechanistic-empirical design of new and rehabilitated pavement structures. Final Report, National Cooperative Highway Research Program (NCHRP) Project 1-37A, Albuquerque, New Mexico.
  • Asphalt Institute. (1991). Asphalt pavement thickness design for highways and streets (MS-1). Lexington: Kentucky.
  • Chapra, S. C., & Canale, R. P. (2006). Numerical methods for engineers (6th ed.). New York: McGraw-Hill.
  • Chatti, K., Ji, Y., & Harichandran, R. S. (2004). Dynamic time domain backcalculation of layer moduli, damping, and thicknesses in flexible pavements. Transportation Research Record: Journal of the Transportation Research Board, 1869, 106–116. doi: 10.3141/1869-13
  • De Jong, D. L., Peutz, M. G. F., & Korswagen, A. R. (1979). Computer program BISAR. Layered systems under normal and tangential surface load. External Rep. No. AMSR. 0006.73, Koninklijke/Shell Laboratorium, Amsterdam, The Netherlands.
  • Doyle, J. F. (1997). Wave propagation in structures: Spectral analysis using fast discrete Fourier transforms. New York: Springer.
  • Dubois, F., Moutou Pitti, R., Picoux, B., & Petit, C. (2012). Finite element model for crack growth process in concrete bituminous. Advances in Engineering Software, 44(1), 35–43. doi: 10.1016/j.advengsoft.2011.05.039
  • Ellis, T. B. (2008). A comparison of nondestructive testing backcalculation techniques for rigid and flexible pavements (Phd). University of Arkansas.
  • Elseifi, M., Al-Qadi, I. L., & Yoo, P. J. (2006). Viscoelastic modeling and field validation of flexible pavements. Journal of Engineering Mechanics, 132(2), 172–178. doi: 10.1061/(ASCE)0733-9399(2006)132:2(172)
  • Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear viscoelastic materials. Mineola, NY: Dover.
  • Grenier, S., Konrad, J. M., & LeBoeuf, D. (2009). Dynamic simulation of falling weight deflectometer tests on flexible pavements using the spectral element method: Forward calculations. Canadian Journal of Civil Engineering, 36(6), 944–956. doi: 10.1139/L08-118
  • Lee, H. S., & Steele, D. (2017). Dynamic backcalculation of asphalt pavement properties and simulation of pavement response under moving loads. Transportation research board 96th annual meeting, Washington, DC.
  • Lee, S. W., Mahoney, J. P., & Jackson, N. C. (1988). Verification of a backcalculation of pavement moduli. Transportation Research Record, 1196, 85–95.
  • Lee, U. (2009). Spectral element method in structural dynamics. Singapore: John Wiley & Sons (Asia).
  • Picoux, B., El Ayadi, A., & Petit, C. (2009). Dynamic response of a flexible pavement submitted by impulsive loading. Soil Dynamics and Earthquake Engineering, 29(5), 845–854. doi: 10.1016/j.soildyn.2008.09.001
  • Rizzi, S. A., & Doyle, J. F. (1992a). Spectral analysis of wave motion in plane solids with boundaries. Journal of Vibration and Acoustics, 114(2), 133–140. doi: 10.1115/1.2930241
  • Rizzi, S. A., & Doyle, J. F. (1992b). A spectral element approach to wave motion in layered solids. Journal of Vibration and Acoustics, 114(4), 569–577. doi: 10.1115/1.2930300
  • Ruina, A., & Pratap, R. (2002). Introduction to statics and dynamics. Oxford: Oxford University Press.
  • Scullion, T., Uzan, J., & Paredes, M. (1990). MODULUS: Microcomputer based backcalculation system. Transportation Research Record, 1260, 180–191.
  • Shell International Petroleum Company. (1978). Shell pavement design manual. London: Shell International Petroleum Company.
  • Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. New York: Springer-Verlag.
  • Yin, H. (2012). Simulation of flexible pavement response to FWD loads: A mechanistic approach. International Journal of Pavement Research and Technology, 5(4), 257–266.
  • Zafir, Z., Siddharthan, R., & Sebaaly, P. E. (1994). Dynamic pavement-strain histories from moving traffic load. Journal of Transportation Engineering, 120(5), 821–842. doi: 10.1061/(ASCE)0733-947X(1994)120:5(821)
  • Zhao, Y., Cao, D., & Chen, P. (2015). Dynamic backcalculation of asphalt pavement layer properties using spectral element method. Road Materials and Pavement Design, 16(4), 870–888. doi: 10.1080/14680629.2015.1056214
  • Zhao, Y., Liu, H., Bai, L., & Tan, Y. (2013). Characterization of linear viscoelastic behavior of asphalt concrete using complex modulus model. Journal of Materials in Civil Engineering, 25(10), 1543–1548. doi: 10.1061/(ASCE)MT.1943-5533.0000688
  • Zhao, Y., Ni, Y., Wang, L., & Zeng, W. (2014). Viscoelastic response solutions of multilayered asphalt pavements. Journal of Engineering Mechanics, 140(10), 2729–2737. doi: 10.1061/(ASCE)EM.1943-7889.0000797
  • Zhong, X., Zeng, X., & Rose, J. G. (2002). Shear modulus and damping ratio of rubber-modified asphalt mixes and unsaturated subgrade soils. Journal of Materials in Civil Engineering, 14(6), 496–502. doi: 10.1061/(ASCE)0899-1561(2002)14:6(496)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.