476
Views
21
CrossRef citations to date
0
Altmetric
Scientific papers

Effectiveness of lime in stabilising subgrade soils subjected to freeze–thaw cycles

ORCID Icon &
Pages 42-60 | Received 23 Apr 2017, Accepted 03 May 2018, Published online: 07 Jun 2018

References

  • AASHTO M145-91. (2012). Standard specification for classification of soils and soil-aggregate mixtures for highway construction purposes. Washington, DC: Author.
  • Al-Kiki, I., Al-Attalla, M., & Al-Zubaydi, A. (2011). Long term strength and durability of clayey soil stabilized with lime. Engineering and Technology Journal, 29(4), 725–735.
  • Al-Mukhtar, M., Khattab, S., & Alcover, J. F. (2012). Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139-140, 17–27. doi: 10.1016/j.enggeo.2012.04.004
  • Al-Rawas, A. A., & Goosen, M. F. (Eds.). (2006). Expansive soils: Recent advances in characterization and treatment. London: Taylor & Francis.
  • Aldaood, A., Bouasker, M., & Al-Mukhtar, M. (2014). Impact of freeze-thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Regions Science and Technology, 99, 38–45. doi: 10.1016/j.coldregions.2013.12.003
  • ASTM C666/C666M-15. (2015). Standard test method for resistance of concrete to rapid freezing and thawing. West Conshohocken, PA: Author.
  • ASTM D 2487-11. (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA: Author.
  • ASTM D2166-13. (2013). Standard test method for unconfined compressive strength of cohesive soil. West Conshohocken, PA: Author.
  • ASTM D422-63. (2007). Standard test method for particle-size analysis of soils. West Conshohocken, PA: Author.
  • ASTM D4318-10. (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA: Author.
  • ASTM D4609-08. (2008). Standard guide for evaluating effectiveness of admixtures for soil stabilization. West Conshohocken, PA: Author.
  • ASTM D698-12. (2012). Fundamental principles of soil compaction. West Conshohocken, PA: Author.
  • Bell, F. G. (1993). Engineering treatment of soils. London: E & FN Spon.
  • Bozbey, I., Kamal, N. A., & Abut, Y. (2017). Effects of soil pulverisation level and freeze and thaw cycles on fly-ash-and lime-stabilised high plasticity clay: Implications on pavement design and performance. Road Materials and Pavement Design, 18(5), 1–19. doi: 10.1080/14680629.2016.1207553
  • Cui, Z. D., He, P. P., & Yang, W. H. (2014). Mechanical properties of a silty clay subjected to freezing-thawing. Cold Regions Science and Technology, 98, 26–34. doi: 10.1016/j.coldregions.2013.10.009
  • Czurda, K. A., & Hohmann, M. (1997). Freezing effect on shear strength of clayey soils. Applied Clay Science, 12(1), 165–187. doi: 10.1016/S0169-1317(97)00005-7
  • Eskisar, T., Altun, S., & Kalipcilar, I. (2015). Assessment of strength development and freeze-thaw performance of cement treated clays at different water contents. Cold Regions Science and Technology, 111, 50–59. doi: 10.1016/j.coldregions.2014.12.008
  • Gullu, H. (2015). Unconfined compressive strength and freeze-thaw resistance of fine-grained soil stabilised with bottom ash, lime and superplasticiser. Road Materials and Pavement Design, 16(3), 608–634. doi: 10.1080/14680629.2015.1021369
  • Gullu, H., & Khudir, A. (2014). Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold Regions Science and Technology, 106-107, 55–65. doi: 10.1016/j.coldregions.2014.06.008
  • Gurbuz, A. (2015). Marble powder to stabilise clayey soils in sub-bases for road construction. Road Materials and Pavement Design, 16(2), 481–492. doi: 10.1080/14680629.2015.1020845
  • Harichane, K., Ghrici, M., & Kenai, S. (2012). Effect of the combination of lime and natural pozzolana on the compaction and strength of soft clayey soils: A preliminary study. Environmental Earth Sciences, 66(8), 2197–2205. doi: 10.1007/s12665-011-1441-x
  • Hohmann-Porebska, M. (2002). Microfabric effects in frozen clays in relation to geotechnical parameters. Applied Clay Science, 21(1), 77–87. doi: 10.1016/S0169-1317(01)00094-1
  • Hori, M., & Morihiro, H. (1998). Micromechanical analysis on deterioration due to freezing and thawing in porous brittle materials. International Journal of Engineering Science, 36(4), 511–522. doi: 10.1016/S0020-7225(97)00080-3
  • Hotineanu, A., Bouasker, M., Aldaood, A., & Al-Mukhtar, M. (2015). Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays. Cold Regions Science and Technology, 119, 151–157. doi: 10.1016/j.coldregions.2015.08.008
  • Jafari, M., & Esna-ashari, M. (2012). Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition. Cold Regions Science and Technology, 82, 21–29. doi: 10.1016/j.coldregions.2012.05.012
  • Kalkan, E. (2009). Effects of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw. Cold Regions Science and Technology, 58(3), 130–135. doi: 10.1016/j.coldregions.2009.03.011
  • Kamei, T., Ahmed, A., & Shibi, T. (2012). Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilised with recycled bassanite. Cold Regions Science and Technology, 82, 124–129. doi: 10.1016/j.coldregions.2012.05.016
  • Khemissa, M., & Mahamedi, A. (2014). Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science, 95, 104–110. doi: 10.1016/j.clay.2014.03.017
  • Lemaire, K., Deneele, D., Bonnet, S., & Legret, M. (2013). Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Engineering Geology, 166, 255–261. doi: 10.1016/j.enggeo.2013.09.012
  • Lin, D. F., Lin, K. L., Hung, M. J., & Luo, H. L. (2007). Sludge ash/hydrated lime on the geotechnical properties of soft soil. Journal of Hazardous Materials, 145(1), 58–64. doi: 10.1016/j.jhazmat.2006.10.087
  • Liu, J., Wang, T., & Tian, Y. (2010). Experimental study of the dynamic properties of cement-and lime-modified clay soils subjected to freeze-thaw cycles. Cold Regions Science and Technology, 61(1), 29–33. doi: 10.1016/j.coldregions.2010.01.002
  • Okagbue, C. O., & Yakubu, J. A. (2000). Limestone ash waste as a substitute for lime in soil improvement for engineering construction. Bulletin of Engineering Geology and the Environment, 58(2), 107–113. doi: 10.1007/s100640050004
  • Olgun, M. (2013). The effects and optimization of additives for expansive clays under freeze-thaw conditions. Cold Regions Science and Technology, 93, 36–46. doi: 10.1016/j.coldregions.2013.06.001
  • Prusinski, J., & Bhattacharja, S. (1999). Effectiveness of Portland cement and lime in stabilizing clay soils. Transportation Research Record: Journal of the Transportation Research Board, 1652, 215–227. doi: 10.3141/1652-28
  • Qi, J., Ma, W., & Song, C. (2008). Influence of freeze-thaw on engineering properties of a silty soil. Cold Regions Science and Technology, 53(3), 397–404. doi: 10.1016/j.coldregions.2007.05.010
  • Qin, Y., Zhang, J., Li, G., & Qu, G. (2010). Settlement characteristics of unprotected embankment along the Qinghai-Tibet Railway. Cold Regions Science and Technology, 60(1), 84–91. doi: 10.1016/j.coldregions.2009.08.002
  • Qubain, B., Seksinsky, E., & Li, J. (2000). Incorporating subgrade lime stabilization into pavement design. Transportation Research Record: Journal of the Transportation Research Board, 1721, 3–8. doi: 10.3141/1721-01
  • Rogers, C. D. F., & Glendinning, S. (1996, September). Modification of clay soils using lime. In Proceedings, seminar on lime stabilization (pp. 99–114). London: Thomas Telford.
  • Salehi, M., & Sivakugan, N. (2009). Effects of lime-clay modification on the consolidation behavior of the dredged mud. Journal of Waterway, Port, Coastal, and Ocean Engineering, 135(6), 251–258. doi: 10.1061/(ASCE)WW.1943-5460.0000004
  • Schmitz, R. M., Schroeder, C., & Charlier, R. (2004). Chemo-mechanical interactions in clay: A correlation between clay mineralogy and Atterberg limits. Applied Clay Science, 26(1), 351–358. doi: 10.1016/j.clay.2003.12.015
  • Shibi, T., & Kamei, T. (2014). Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash. Cold Regions Science and Technology, 106-107, 36–45. doi: 10.1016/j.coldregions.2014.06.005
  • Sivapullaiah, P. V., Sridharan, A., & Bhaskar Raju, K. V. (2000). Role of amount and type of clay in the lime stabilization of soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(1), 37–45. doi: 10.1680/grim.2000.4.1.37
  • Tebaldi, G., Orazi, M., & Orazi, U. S. (2016). Effect of freeze—thaw cycles on mechanical behavior of lime-stabilized soil. Journal of Materials in Civil Engineering, 28(6), 06016002. doi: 10.1061/(ASCE)MT.1943-5533.0001509
  • Wang, D. Y., Ma, W., Niu, Y. H., Chang, X. X., & Wen, Z. (2007). Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Regions Science and Technology, 48(1), 34–43. doi: 10.1016/j.coldregions.2006.09.008
  • Wang, T. L., Liu, Y. J., Yan, H., & Xu, L. (2015). An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles. Cold Regions Science and Technology, 112, 51–65. doi: 10.1016/j.coldregions.2015.01.004
  • Wang, W., Qin, Y., Lei, M., & Zhi, X. (2018). Effect of repeated freeze-thaw cycles on the resilient modulus for fine-grained subgrade soils with low plasticity index. Road Materials and Pavement Design, 19(4), 898–911. doi: 10.1080/14680629.2017.1283352
  • Yildiz, M., & Soganci, A. S. (2012). Effect of freezing and thawing on strength and permeability of lime-stabilized clays. Scientia Iranica, 19(4), 1013–1017. doi: 10.1016/j.scient.2012.06.003
  • Yong, R. N., & Ouhadi, V. R. (2007). Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Applied Clay Science, 35(3), 238–249. doi: 10.1016/j.clay.2006.08.009
  • Zhou, Z., Ma, W., Zhang, S., Mu, Y., & Li, G. (2018). Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Regions Science and Technology, 146, 9–18. doi: 10.1016/j.coldregions.2017.11.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.