561
Views
31
CrossRef citations to date
0
Altmetric
Scientific Papers

Mechanical and compaction properties of graphite nanoplatelet-modified asphalt binders and mixtures

, &
Pages 1799-1814 | Received 23 Jul 2018, Accepted 03 Jan 2019, Published online: 22 Jan 2019

References

  • Abolfazl, Z., Ali, S., & Salman, E.-N. (2010). Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Construction and Building Materials, 24(7), 1239–1244. doi: 10.1016/j.conbuildmat.2009.12.013
  • American Association of State Highway and Transportation Officials (AASHTO). (2007a). AASHTO T322-07, Standard Method of Test for Determining the Creep Compliance and Strength of Hot-Mix Asphalt (HMA) Using the Indirect Tensile Test Device.
  • American Association of State Highway and Transportation Officials (AASHTO). (2007b). AASHTO TP105-2013 Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB).
  • American Association of State Highway and Transportation Officials (AASHTO). (2010a). AASHTO T166-10-UL, Standard Method of Test for Bulk Specific Gravity of Compacted Hot Mix Asphalt (HMA) Using Saturated Surface-Dry Specimen.
  • American Association of State Highway and Transportation Officials (AASHTO). (2010b). AASHTO T209-10-UL, Standard Method of Test for Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt (HMA).
  • American Association of State Highway and Transportation Officials (AASHTO). (2012). AASHTO R028-12-UL Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV).
  • American Association of State Highway and Transportation Officials (AASHTO). (2013). AASHTO T240-13-UL Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-film Oven Test).
  • Amirkhanian, A. N., Xiao, F., & Amirkhanian, S. N. (2010). Characterization of unaged asphalt binder modified with carbon nano particles. International Journal of Pavement Research and Technology, 4(5), 281–286.
  • Arabani, M., & Faramarzi, M. (2015). Characterization of CNTs-modified HMA’s mechanical properties. Construction and Building Materials, 83, 207–215. doi: 10.1016/j.conbuildmat.2015.03.035
  • Azarhoosh, A. R., Nejad, F. M., & Khodaii, A. (2018). Nanomaterial and fatigue cracking of hot mix asphalt. Road Materials and Pavement Design, 19(2), 353–366. doi: 10.1080/14680629.2016.1261724
  • Bažant, Z. P., Kazemi, M. T., Hasegawa, T., & Mazars, J. (1991). Size effect in Brazilian split-cylinder tests: Measurement and fracture analysis. ACI Materials Journal, 88(3), 325–332.
  • Bažant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials. Boca Raton: CRC Press.
  • Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: A new emerging lubricant. Materials Today, 17(1), 31–42. doi: 10.1016/j.mattod.2013.12.003
  • Determining the flexural creep stiffness of asphalt binder using the Bending Beam Rheometer (BBR). (2010). [Computer software manual].
  • Du, H., Gao, H. J., & Pang, S. D. (2016). Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cement and Concrete Research, 83, 114–123. doi: 10.1016/j.cemconres.2016.02.005
  • Du, H., & Pang, S. D. (2015a). Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cement and Concrete Research, 76, 10–19. doi: 10.1016/j.cemconres.2015.05.007
  • Du, H., & Pang, S. D. (2015b). Mechanical response and strain sensing of cement composites added with graphene nanoplatelet under tension. In K. Sobolev & S. Shah (Eds.), Nanotechnology in construction (pp. 377–382). Cham: Springer.
  • Falchetto, A. C., Le, J.-L., Turos, M., & Marasteanu, M. O. (2014). Indirect determination of size effect on strength of asphalt mixtures at low temperatures. Materials and Structures, 47(102), 157–169. doi: 10.1617/s11527-013-0052-2
  • Gong, M., Yang, J., Yao, H., Wang, M., Niu, X., & Haddock, J. E. (2018). Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder. Road Materials and Pavement Design, 19(7), 1499–1522. doi: 10.1080/14680629.2017.1323661
  • Hamedi, G. H., Nejad, F. M., & Oveisi, K. (2015). Investigating the effects of using nanomaterials on moisture damage of HMA. Road Materials and Pavement Design, 16(3), 536–552. doi: 10.1080/14680629.2015.1020850
  • Jahromi, S., & Ghaffarpour, K. A. (2009). Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23, 2894–2904. doi: 10.1016/j.conbuildmat.2009.02.027
  • Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Highly dispersed carbon nantube reinforced cement based materials. Cement and Concrete Research, 40, 1052–1059. doi: 10.1016/j.cemconres.2010.02.015
  • Le, J.-L., Cannone Falchetto, A., & Marasteanu, M. O. (2013). Determination of strength distribution of quasibrittle structures from mean size effect analysis. Mechanics of Materials, 66, 79–87. doi: 10.1016/j.mechmat.2013.07.003
  • Le, J.-L., Du, H., & Pang, S. D. (2014). Use of 2D graphene nanoplatelets (GNP) in cement composites for structural health evaluation. Composites Part B: Engineering, 67, 555–563. doi: 10.1016/j.compositesb.2014.08.005
  • Marasteanu, M. O., Zofka, A., Turos, M., Li, X., Velasquez, R., Li, X., … McGraw, J. (2007). Investigation of low temperature cracking in asphalt pavements: National Pooled Fund Study 776 (Tech. Rep.). St Paul: Minnesota Department of Transportation.
  • Rashad, M., Pan, F., Tang, A., & Asif, M. (2014). Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International, 24(2), 101–108. doi: 10.1016/j.pnsc.2014.03.012
  • RILEM TC-50 FMC. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18, 285–290. doi: 10.1007/BF02472917
  • Shirakawa, T., Tada, A., & Okazaki, N. (2012). Development of functional carbon nanotubes-asphalt composites. International Journal of GEOMATE, 2(1), 161–165.
  • Steyn, W. J. (2011). Applications of nanotechnology in road pavement engineering. In K. Gopalakrishnan, B. Birgisson, P. Taylor, & N. O. Attoh-Okine (Eds.), Nanotechnology in Civil Infrastructure (pp. 49–83). Berlin: Springer.
  • van de Ven, M. F. C., Molenaar, A. A. A., Besamusca, J., & Noordergraaf, J. (2008). Nanotechnology for binders of asphalt mixtures. Proceedings of the 4th Eurasphalt and Eurobitume Congress. Brussels, Belgium.
  • Wang, Z., Dai, Q., Guo, S., Wang, R., Ye, M., & Yap, Y. K. (2017). Experimental investigation of physical properties and accelerated sunlight-healing performance of flake graphite and exfoliated graphite nanoplatelet modified asphalt materials. Construction and Building Materials, 134, 412–423. doi: 10.1016/j.conbuildmat.2016.12.129
  • Yang, J., & Tighe, S. (2013). A review of advances of nanotechnology in asphalt mixtures. Procedia – Social and Behavioral Sciences, 96, 1269–1276. doi: 10.1016/j.sbspro.2013.08.144
  • Yao, H., Yao, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K., … Goh, S. W. (2013). Rheological properties and chemical bonding of asphalt modified with nanosilica. Journal of Materials in Civil Engineering, 25(11), 1619–1630. doi: 10.1061/(ASCE)MT.1943-5533.0000690
  • Yao, H., & You, Z. (2016). Effectiveness of micro- and nanomaterials in asphalt mixtures through dynamic modulus and rutting tests. Journal of Nanomaterials, 2016, 2645250.
  • Yu, J., Wang, L., Zeng, X., Wu, S., & Li, B. (2007). Effect of montmorillonite on properties of styrene–butadiene–styrene copolymer modified bitumen. Polymer Engineering & Science, 47(9), 1289–1295. doi: 10.1002/pen.20802
  • Zegeye, E., Le, J.-L., Turos, M., & Marasteanu, M. O. (2012). Investigation of size effect in asphalt mixture fracture testing at low temperature. Road Materials and Pavement Design, 13(S1), 88–101. doi: 10.1080/14680629.2012.657064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.