326
Views
3
CrossRef citations to date
0
Altmetric
Scientific Papers

A new paradigm to explain the development of instability rutting in asphalt pavements

, ORCID Icon &
Pages 1815-1828 | Received 15 Jan 2018, Accepted 17 Dec 2018, Published online: 28 Jan 2019

References

  • Abu Al-Rub, R. K., Darabi, M. K., Huang, C. W., Masad, E. A., & Little, D. N. (2012). Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements. International Journal of Pavement Engineering, 13(4), 322–338. doi:10.1080/10298436.2011.566613.
  • Choi, Y. T., & Kim, R. (2014). Implementation and verification of a mechanistic permanent deformation model (shift model) to predict rut depths of asphalt pavement. Journal of the Annual Meeting of the Association of Asphalt Pavement Technologists, 83, 481–515.
  • Coleri, E., Harvey, J. T., Yang, K., & Boone, J. M. (2012a). A micromechanical approach to investigate asphalt concrete rutting mechanisms. Construction and Building Materials, 30, 36–49. doi:10.1016/j.conbuildmat.2011.11.041.
  • Coleri, E., Harvey, J. T., Yang, K., & Boone, J. M. (2012b). Investigation of aggregate movement and air-void reduction on heavy vehicle simulator test sections by computed tomography imaging. Proceedings of the 91st Annual Meeting of the Transportation Research Board, Transportation Research Board of the National Academies, Washington, DC.
  • Collop, A. C., Scarpas, T., Kasbergen, C., & de Bondt, A. (2003). Development and finite element implementation of stress-dependent elastoviscoplastic constitutive model with damage for asphalt. Transportation Research Record, 1832, 96–104. doi:10.3141/1832-12.
  • Darabi, M. K., Abu Al-Rub, R. K., Masad, E. A., Huang, C. W., & Little, D. N. (2011). A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 48, 191–207. doi:10.1016/j.ijsolstr.2010.09.019.
  • Darabi, M. K., Abu Al-Rub, R. K., Masad, E. A., & Little, D. N. (2013). Cyclic hardening-relaxation viscoplasticity model for asphalt concrete materials. Journal of Engineering Mechanics, 139(7), 832–847. doi: 10.1061/(ASCE)EM.1943-7889.0000541.
  • Drakos, C., Roque, R., & Birgisson, B. (2001). Effects of measured tire contact stresses on near-surface rutting. Transportation Research Record: Journal of the Transportation Research Board, 1764, 59–69. doi:10.3141/1764-07.
  • Fwa, T. F., Tan, S. A., & Zhu, L. Y. (2001). Reexamining C–Φ concept for asphalt paving mix design. Journal of Transportation Engineering, 127(1), 67–73. doi:10.1061/(ASCE)0733-947X(2001)127:1(67).
  • Fwa, T. F., Tan, S. A., & Zhu, L. Y. (2004). Rutting prediction of asphalt pavement layer using C–Φ model. Journal of Transportation Engineering, 130(5), 675–683. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:5(675).
  • Huang, C. W., Abu Al-Rub, R. K., Masad, E. A., & Little, D. N. (2011). Three-dimensional simulations of asphalt pavement permanent deformation using a nonlinear viscoelastic and viscoplastic model. ASCE Journal of Materials in Civil Engineering, 23, 56–68. doi:10.1061/(ASCE)MT.1943-5533.0000022.
  • Huang, C. W., Masad, E. A., Muliana, A. H., & Bahia, H. (2007). Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading. Mechanics of Time-Dependent Materials, 11(2), 91–110. doi:10.1007/s11043-007-9034-5.
  • Jahangiri, B., Karimi, M. M., & Tabatabaee, N. (2017). Relaxation of hardening in asphalt concrete under cyclic compression loading. Journal of Materials in Civil Engineering, 29(5), 1–8. doi:10.1061/(ASCE)MT.1943-5533.0001814.
  • Karimi, M. M., Tabatabaee, N., Jahangiri, B., & Darabi, M. K. (2017). Constitutive modeling of hardening-relaxation response of asphalt concrete in cyclic compressive loading. Construction and Building Materials, 137, 169–184. doi:10.1016/j.conbuildmat.2017.01.116.
  • Masad, E., Dessouky, S., & Little, D. (2007). Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt. ASCE International Journal of Geomechanics, 7(2), 119–130. doi:10.1061/(ASCE)1532-3641(2007)7:2(119).
  • Meng, L. (2002). Truck tire/pavement interaction analysis by the finite element method (Ph.D., dissertation). Michigan State University, East Lansing, MI.
  • Myers, L. A., Roque, R., Ruth, B., & Drakos, C. (1999). Measurement of contact stresses for different truck tire types to evaluate their influence on near-surface cracking and rutting. Transportation Research Record: Journal of the Transportation Research Board, 1655, 175–184. doi:10.3141/1655-23.
  • Novak, M., Birgisson, B., & Roque, R. (2003). Tire contact stresses and their effects on instability rutting of asphalt mixture pavements. Transportation Research Record: Journal of the Transportation Research Board, 1853, 150–156. doi:10.3141/1853-17.
  • Roque, R., Myers, L. A., & Birgisson, B. (2000). Evaluating measured tire contact stresses to predict pavement response and performance. Transportation Research Record: Journal of the Transportation Research Board, 1716, 73–81. doi:10.3141/1716-09.
  • Saleeb, A., Liang, R. Y., Qablan, H. A., & Powers, D. (2005). Numerical simulation techniques for HMA rutting under loaded wheel tester. International Journal of Pavement Engineering, 6(1), 57–66. doi:10.1080/10298430500068704.
  • Shoop, S. A. (2001). Finite element modeling of tire-terrain interaction (Ph.D., dissertation). University of Michigan, Ann Arbor, MI.
  • Villiers, C., Roque, R., & Dietrich, B. (2005). Interpretation of transverse profiles to determine the source of rutting within an asphalt pavement system. Transportation Research Record: Journal of the Transportation Research Board, 1905, 73–81. doi:10.3141/1905-09.
  • Wang, G. (2009). Effects of truck tire type and tire-pavement interaction on top-down cracking and instability rutting (Ph.D., dissertation). University of Florida, Gainesville.
  • Wang, G., & Roque, R. (2011). Impact of wide-based tires on the near-surface pavement stress states based on three-dimensional tire-pavement interaction model. Road Materials and Pavement Design, 12(3), 639–662. doi:10.1080/14680629.2011.9695264.
  • Zhang, X. (2001). Nonlinear finite element modeling and incremental analysis of a composite truck tire structure (Ph.D., dissertation). Concordia University, Montreal, Quebec.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.