327
Views
10
CrossRef citations to date
0
Altmetric
Scientific Papers

New binary paper/wood industry waste blend for solidification/stabilisation of problematic soil subgrade: macro-micro study

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 1215-1232 | Received 17 Dec 2021, Accepted 06 Apr 2022, Published online: 20 Apr 2022

References

  • Al-Rawas, A. A. (2002). Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags. Canadian Geotechnical Journal, 39(5), 1150–1167. https://doi.org/10.1139/t02-046
  • Al-Yaqoub, T. H., Parol, J., & Znidarcic, D. (2017). Experimental investigation of volume change behavior of swelling soil. Applied Clay Science, 137, 22–29. https://doi.org/10.1016/j.clay.2016.11.018
  • Alazigha, D. P., Indraratna, B., Vinod, J. S., & Ezeajugh, L. E. (2016). The swelling behaviour of lignosulfonate-treated expansive soil. Proceedings of the Institution of Civil Engineers-Ground Improvement, 169(3), 182–193. https://doi.org/10.1680/jgrim.15.00002
  • Anand, S., Gaur, A., Gupta, M., & Deori, M. P. (2021). Pavement subgrade stabilisation using refractory castables: Minimisation of layer thickness. Road Materials and Pavement Design, 1–15. https://doi.org/10.1080/14680629.2021.1976258
  • Atahu, M. K., Saathoff, F., & Gebissa, A. (2019). Strength and compressibility behaviors of expansive soil treated with coffee husk ash. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 337–348. https://doi.org/10.1016/j.jrmge.2018.11.004
  • Bajpai, P. (2016). Pulp and paper industry: Energy conservation. Elsevier.
  • Briaud, J. L., & Beecher, P. (1998). Shrink test for predicting heave and shrink movements. In Proceedings, ASCE Texas section fall meeting.
  • Cai, Y., Xu, L., Liu, W., Shang, Y., Su, N., & Feng, D. (2020). Field test study on the dynamic response of the cement-improved expansive soil subgrade of a heavy-haul railway. Soil Dynamics and Earthquake Engineering, 128, Article 105878. https://doi.org/10.1016/j.soildyn.2019.105878
  • Calik, U., & Sadoglu, E. (2014). Classification, shear strength, and durability of expansive clayey soil stabilized with lime and perlite. Natural Hazards, 71(3), 1289–1303. https://doi.org/10.1007/s11069-013-0950-1
  • Chen, F. H. (2012). Foundations on expansive soils (Vol. 12). Elsevier.
  • Cullity, B. D. (1979). Elements of X-Ray diffraction (2nd ed.). Addison-Wesley.
  • Del Castillo, E., Montgomery, D. C., & McCarville, D. R. (1996). Modified desirability functions for multiple response optimization. Journal of Quality Technology, 28(3), 337–345. https://doi.org/10.1080/00224065.1996.11979684
  • Food and Agriculture Organization of the United Nations (FAO). (2012). Sustainable forest industries: Opening pathways to low-carbon economy. FAO.
  • Ferreira, T., & Rasband, W. (2012). ImageJ user guide. ImageJ/Fiji, 1, 155–161.
  • Gandini, A., & Belgacem, M. N. (2008). Lignins as components of macromolecular materials. In Mohamed Naceur Belgacem & Alessandro Gandini (Eds.), Monomers, polymers and composites from renewable resources (pp. 243–271). Elsevier.
  • GB/T 50123. (1999). Standard for soil test method.
  • Ijaz, N., Dai, F., & ur Rehman, Z. (2020). Paper and wood industry waste as a sustainable solution for environmental vulnerabilities of expansive soil: A novel approach. Journal of Environmental Management, 262, Article 110285. https://doi.org/10.1016/j.jenvman.2020.110285
  • Ijaz, N., ur Rehman, Z., & Ijaz, Z. (2022a). Recycling of paper/wood industry waste for hydromechanical stability of expansive soils: A novel approach. Journal of Cleaner Production, 348, Article 131345. https://doi.org/10.1016/j.jclepro.2022.131345
  • Ijaz, N., Ye, W., ur Rehman, Z., Dai, F., & Ijaz, Z. (2022b). Numerical study on stability of lignosulphonate-based stabilized surficial layer of unsaturated expansive soil slope considering hydro-mechanical effect. Transportation Geotechnics, 32, Article 100697. https://doi.org/10.1016/j.trgeo.2021.100697
  • Ijaz, N., Rehman, Z.U., & Ijaz, Z. (2022c). Principles and prospects of using lignosulphonate as a sustainable expansive soil ameliorator: From basics to innovations. In R. K. Pancharathi, N. G. Reddy, & S. R. Arukala (Eds.), Advances in sustainable materials and resilient infrastructure (pp. 103–116). Singapore: Springer. https://doi.org/10.1007/978-981-16-9744-9_7
  • Ismeik, M., & Shaqour, F. (2020). Effectiveness of lime in stabilising subgrade soils subjected to freeze–thaw cycles. Road Materials and Pavement Design, 21(1), 42–60. https://doi.org/10.1080/14680629.2018.1479289
  • Jamsawang, P., Charoensil, S., Namjan, T., Jongpradist, P., & Likitlersuang, S. (2021). Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials. Road Materials and Pavement Design, 22(11), 2498–2522. https://doi.org/10.1080/14680629.2020.1772349
  • Kong, L., Hasanbeigi, A., Price, L., & Liu, H. (2017). Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry. Resources, Conservation and Recycling, 117, 74–84. https://doi.org/10.1016/j.resconrec.2015.05.001
  • Li, S. L., Qin, S. J., Bo, Z. Z., & Shi, B. (1992). Studies on the engineering geology of expansive soils in China (p. 212). Jiangsu Science and Technology Publishing House.
  • Lopes, E. C., da Silva, T. O., Pitanga, H. N., Pedroti, L. G., de Carvalho, F. J. M., Nalon, H. G., & de Araújo, E. N. D. (2022). Stabilisation of clayey and sandy soils with ladle furnace slag fines for road construction. Road Materials and Pavement Design, 1–20. https://doi.org/10.1080/14680629.2021.2017328
  • Murmu, A. L., Dhole, N., & Patel, A. (2020). Stabilisation of black cotton soil for subgrade application using fly ash geopolymer. Road Materials and Pavement Design, 21(3), 867–885. https://doi.org/10.1080/14680629.2018.1530131
  • Rehman, Z. U., & Khalid, U. (2022). Optimization of COVID-19 face mask waste fibers and silica fume as a balanced mechanical ameliorator of fat clay using response surface methodology. Environmental Science and Pollution Research, 29(12), 17001–17016. https://doi.org/10.1007/s11356-021-16912-w
  • Statistics, I. S. (2013). IBM Corp. Released 2013. IBM SPSS statistics for windows, Version 22.0. IBM Corp.
  • Syed, M., GuhaRay, A., & Goel, D. (2021). Strength characterisation of fiber reinforced expansive subgrade soil stabilized with alkali activated binder. Road Materials and Pavement Design, 1–24.
  • Transportation Officials. (1993). AASHTO guide for design of pavement structures, 1993 (Vol. 1). Aashto.
  • Trindade, T. P., Carvalho, C. A., Silva, C. H., de Lima, D. C., & Barbosa, P. S. (2003). Resilient modulus of soils and soil-cement mixtures. In W. A. Marr (Ed.), Resilient modulus testing for pavement components. ASTM International.
  • Wang, S. L., & Baaj, H. (2021). Treatment of weak subgrade materials with cement and hydraulic road binder (HRB). Road Materials and Pavement Design, 22(8), 1756–1779. https://doi.org/10.1080/14680629.2020.1712224
  • Zheng, J. L., Zhang, R., & Yang, H. P. (2009). Highway subgrade construction in expansive soil areas. Journal of Materials in Civil Engineering, 21(4), 154–162. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:4(154)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.