341
Views
1
CrossRef citations to date
0
Altmetric
Scientific Papers

Performance evaluation of surface-treated montmorillonite nanoclay-modified bitumen binder at high- and intermediate-temperature conditions

, , &
Pages 1330-1352 | Received 22 Jul 2021, Accepted 26 Apr 2022, Published online: 09 May 2022

References

  • Abdullah, M. E., Zamhari, K. A., Hainin, M. R., Oluwasola, E. A., Hassan, N. A., & Yusoff, N. I. M. (2016). Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives. Construction and Building Materials, 112, 232–240. https://doi.org/10.1016/j.conbuildmat.2016.02.089
  • Akbari, A., & Modarres, A. (2018). Evaluating the effect of nano-clay and nano-alumina on the fatigue response of bitumen using strain and time sweep tests. International Journal of Fatigue, 114, 311–322. https://doi.org/10.1016/j.ijfatigue.2018.06.007
  • Ameli, A., Babagoli, R., Khabooshani, M., AliAsgari, R., & Jalali, F. (2020). Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite. Construction and Building Materials, 239, Article 117700. https://doi.org/10.1016/j.conbuildmat.2019.117700
  • Ashish, P. K., & Singh, D. (2020). Study on understanding functional characteristics of multi-wall CNT modified asphalt binder. International Journal of Pavement Engineering, 21(9), 1069–1082. https://doi.org/10.1080/10298436.2018.1519190
  • Ashish, P. K., Singh, D., & Bohm, S. (2017). Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Materials and Pavement Design, 18(5), 1007–1026. https://doi.org/10.1080/14680629.2016.1201522
  • Bujdák, J., & Slosiariková, H. (1992). The reaction of montmorillonite with octadecylamine in solid and melted state. Applied Clay Science, 7(4), 263–269. https://doi.org/10.1016/0169-1317(92)90014-E
  • Das, P. K., Balieu, R., Kringos, N., & Birgisson, B. (2015). On the oxidative ageing mechanism and its effect on asphalt mixtures morphology. Materials and Structures, 48(10), 3113–3127. https://doi.org/10.1617/s11527-014-0385-5
  • Das, A. K., & Panda, M. (2017). Investigation on rheological performance of sulphur modified bitumen (SMB) binders. Construction and Building Materials, 149, 724–732. https://doi.org/10.1016/j.conbuildmat.2017.05.198
  • Das, A. K., & Panda, M. (2020). Effectiveness of chitin on thermal susceptibility: Rheological and ageing resistivity behaviour of sulphur modified bitumen binder. Road Materials and Pavement Design, 21(7), 2005–2023. https://doi.org/10.1080/14680629.2019.1590221
  • Das, A. K., & Singh, D. (2021). Influence of nano size hydrated lime filler on rutting performance of asphalt mastic. Road Materials and Pavement Design, 22(5), 1023–1043.
  • Farias, L. G. A., Leitinho, J. L., Amoni, B. D. C., Bastos, J. B., Soares, J. B., Soares, S. D. A., & de Sant’Ana, H. B. (2016). Effects of nanoclay and nanocomposites on bitumen rheological properties. Construction and Building Materials, 125, 873–883. https://doi.org/10.1016/j.conbuildmat.2016.08.127
  • García-Morales, M., Partal, P., Navarro, F. J., Martínez-Boza, F., Gallegos, C., González, N., González, O., & Muñoz, M. E. (2004). Viscous properties and microstructure of recycled eva modified bitumen. Fuel, 83(1), 31–38. https://doi.org/10.1016/S0016-2361(03)00217-5
  • Garcia, D. C., Faxina, A. L., & Leonel, E. D. (2020). A tool based on the linear elastic fracture mechanics to analyze the outputs of the linear amplitude sweep (LAS) test. Construction and Building Materials, 264, Article 120255. https://doi.org/10.1016/j.conbuildmat.2020.120255
  • Ghile, D. (2006). Effects of nano clay modification on rheology of bitumen and on performance of asphalt mixtures [M.S. thesis]. Delft University of Technology.
  • Habal, A., & Singh, D. (2018). Influence of recycled asphalt pavement on interfacial energy and bond strength of asphalt binder for different types of aggregates. Transportation Research Record, 2672(28), 154–166. https://doi.org/10.1177/0361198118784377
  • Ishida, H., Chwan-hwa, C., & Koenig, J. L. (1982). The structure of aminofunctional silane coupling agents: 1. γ-Aminopropyltriethoxysilane and its analogues. Polymer, 23(2), 251–257. https://doi.org/10.1016/0032-3861(82)90310-X
  • Jahromi, S. G., & Khodaii, A. (2009). Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23(8), 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027
  • Kataware, A. V., & Singh, D. (2019). Dynamic mechanical analysis of crumb rubber modified asphalt binder containing warm mix additives. International Journal of Pavement Engineering, 20(9), 1044–1054. https://doi.org/10.1080/10298436.2017.1380806
  • Kavussi, A., & Barghabany, P. (2016). Investigating fatigue behavior of nanoclay and nano hydrated lime modified bitumen using LAS test. Journal of Materials in Civil Engineering, 28(3), Article 04015136. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001376
  • Liang, M., Xin, X., Fan, W., Luo, H., Wang, X., & Xing, B. (2015). Investigation of the rheological properties and storage stability of CR/SBS modified asphalt. Construction and Building Materials, 74, 235–240. https://doi.org/10.1016/j.conbuildmat.2014.10.022
  • Li, R., Pei, J., & Sun, C. (2015). Effect of nano-ZnO with modified surface on properties of bitumen. Construction and Building Materials, 98, 656–661. https://doi.org/10.1016/j.conbuildmat.2015.08.141
  • Liu, G., Wu, S., Van de ven, M., Molenaar, A., & Besamusca, J. (2010). Characterization of organic surfactant on montmorillonite nanoclay to be used in bitumen. Journal of Materials in Civil Engineering, 22(8), 794–799. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000013
  • Liu, G., Nielsen, E., Komacka, J., Leegwater, G., & Van De Ven, M. (2015). Influence of soft bitumens on the chemical and rheological properties of reclaimed polymer-modified binders from the ‘old’ surface-layer asphalt. Construction and Building Materials, 79, 129–135. https://doi.org/10.1016/j.conbuildmat.2015.01.002
  • Lu, X., & Isacsson, U. (2002). Effect of ageing on bitumen chemistry and rheology. Construction and Building Materials, 16(1), 15–22. https://doi.org/10.1016/S0950-0618(01)00033-2
  • Luo, W., Zhang, Y., & Cong, P. (2017). Investigation on physical and high temperature rheology properties of asphalt binder adding waste oil and polymers. Construction and Building Materials, 144, 13–24. https://doi.org/10.1016/j.conbuildmat.2017.03.105
  • Mahdi, L. M., Muniandy, R., Yunus, R. B., Hasham, S., & Aburkaba, E. (2013). Effect of short-term aging on organic montmorillonite nanoclay modified asphalt. Indian Journal of Science and Technology, 6(10), 5434–5442.
  • Martins, A. T. (2014). Contribution to the validation of the fatigue damage test for asphalt binders. Universidade Federal do Rio de Janeiro.
  • Moeini, A. R., Badiei, A., & Rashidi, A. M. (2019). Effect of nanosilica morphology on modification of asphalt binder. Road Materials and Pavement Design, 1–17. https://doi.org/10.1080/14680629.2019.1602072
  • Nascimento, L. A. H., Rocha, S. M. N., Carlos, E. H., Kim, Y. R., Chacur, M., Martins, A. T., Brasileiro, I., & Petr, D. A. P. D. S. (2014). Use of the continuum damage mechanics in the characterization of Brazilian asphalt mixtures. 21o Encontro Asfalto. 1–14.
  • Parvez, M. A., Wahhab, H. I. A. A., Shawabkeh, R. A., & Hussein, I. A. (2014). Asphalt modification using acid treated waste oil fly ash. Construction and Building Materials, 70, 201–209. https://doi.org/10.1016/j.conbuildmat.2014.07.045
  • Portugal, A. C. X., Lucena, L. C. D. F. L., Lucena, A. E. D. F. L., & Beserra da Costa, D. (2018). Rheological performance of soybean in asphalt binder modification. Road Materials and Pavement Design, 19(4), 768–782. https://doi.org/10.1080/14680629.2016.1273845
  • Read, J., Whiteoak, D., & Hunter, R. N. (2003). The shell bitumen handbook. Thomas Telford.
  • Salomon, D., & Zhai, D. H. (2004). Asphalt binder flow activation energy and its significance for compaction effort. Proceedings of 3rd Euroasphalt & Eurobitume Congress, Vienna (pp. 1754–1762).
  • Saltan, M., Terzi, S., & Karahancer, S. (2017). Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, 976–984. https://doi.org/10.1016/j.conbuildmat.2017.09.069
  • Underwood, B. S. (2011). Multiscale constitutive modeling of asphalt concrete. North Carolina State University.
  • Yang, Q., Liu, Q., Zhong, J., Hong, B., Wang, D., & Oeser, M. (2019). Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Construction and Building Materials, 201, 580–589. https://doi.org/10.1016/j.conbuildmat.2018.12.173
  • You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., Dai, Q., & Goh, S. W. (2011). Nanoclay-modified asphalt materials: Preparation and characterization. Construction and Building Materials, 25(2), 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070
  • Zhambolova, A., Vocaturo, A. L., Tileuberdi, Y., Ongarbayev, Y., Caputo, P., Aiello, I., Rossi, C. O., & Godbert, N. (2020). Functionalization and modification of bitumen by silica nanoparticles. Applied Sciences, 10(17), 6065, 1-11. https://doi.org/10.3390/app10176065
  • Zhang, B., Xi, M., Zhang, D., Zhang, H., & Zhang, B. (2009). The effect of styrene–butadiene–rubber/montmorillonite modification on the characteristics and properties of asphalt. Construction and Building Materials, 23(10), 3112–3117. https://doi.org/10.1016/j.conbuildmat.2009.06.011
  • Zhang, D., Zhang, H., & Zhu, C. (2017). Effect of different rejuvenators on the properties of aged SBS modified asphalt. Petroleum Science and Technology, 35(1), 72–78. https://doi.org/10.1080/10916466.2016.1248772
  • Zhang, H., Zhang, D., & Zhu, C. (2015). Properties of bitumen containing various amounts of organic montmorillonite. Journal of Materials in Civil Engineering, 27(11), 04015010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001261
  • Zhu, C., Zhang, H., Shi, C., & Li, S. (2017). Effect of nano-zinc oxide and organic expanded vermiculite on rheological properties of different bitumens before and after aging. Construction and Building Materials, 146, 30–37. https://doi.org/10.1016/j.conbuildmat.2017.04.062

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.