210
Views
0
CrossRef citations to date
0
Altmetric
Scientific Notes

An alternative method for determination of compaction level for the pavement granular layers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3029-3045 | Received 17 Oct 2022, Accepted 14 Feb 2023, Published online: 27 Mar 2023

References

  • Ayadi, A. E., Picoux, B., Lefeuve-mesgouez, G., Mesgouez, A., & Petit, C. (2012). Advances in engineering software: An improved dynamic model for the study of a flexible pavement. Advances in Engineering Software, 44(1), 44–53. https://doi.org/10.1016/j.advengsoft.2011.05.038
  • Briaud, J., & Saez, D. (2015). Recent developments in soil compaction. Compaction, grouting and geosynthetics. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100698-6.00009-X
  • Brown, S. F. (1996). Soil mechanics in pavement engineering. Géotechnique, 46(3), 383–426. https://doi.org/10.1680/geot.1996.46.3.383
  • Chang, G., Xu, Q., Rutledge, J., Horan, B., Larry, M., White, D. J., & Vennapusa, P. (2011). Accelerated implementation of intelligent compaction technology for embankment subgrade soils, aggregate base, and asphalt pavement materials no. FHWA-IF-12-002.
  • Chatti, K. (2004). Use of dynamic analysis for interpreting pavement response in falling weight deflectometer testing. Materials Evaluation, 62(7), 764–774. https://www.webofscience.com/wos/woscc/full-record/WOS:000222570000006
  • CWA 15846. (2008). Measuring method for dynamic compactness & bearing capacity with SP-LFWD (small-plate light falling weight deflectometer). Brussel.
  • Daniel, D. E., & Benson, C. H. (1990). Water content-density criteria for compacted soil liners. Journal of Geotechnical Engineering, 116(12), 1811–1830. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1811)
  • De Beer, M. (1991). Use of dynamic cone penetrometer (DCP) in the design of road structures. In Blight (Ed.), Geotechnics in African environment (pp. 167–176). Balkema Rotterdam.
  • Dutta, T. T., & Kodikara, J. (2022). Evaluation of unbound/subgrade material rutting and resilient behaviour based on initial density and saturation degree. Transportation Geotechnics, 35(May), 100782. https://doi.org/10.1016/j.trgeo.2022.100782
  • Erlingsson, S., Rahman, S., & Salour, F. (2017). Characteristic of unbound granular materials and subgrades based on multi stage RLT testing. Transportation Geotechnics, 13(October), 12–14. https://doi.org/10.1016/j.trgeo.2017.08.009
  • Eslami, A., Moshfeghi, S., MolaAbasi, H., & Eslami, M. M. (2020). Geotechnical parameters from CPT records. In Piezocone and cone penetration test (CPTu and CPT) applications in foundation engineering (pp. 81–110). Elsevier. https://doi.org/10.1016/B978-0-08-102766-0.00004-3
  • Fannin, R. J., & Sigurdsson, O. (1996). Field observations on stabilization of unpaved roads with geosynthetics. Journal of Geotechnical Engineering, 122(7): 544–553. https://doi.org/10.1061/(asce)0733-9410(1996)122:7(544)
  • Filotenkovas, V., & Vaitkus, A. (2022). Influence of the aggregate shape and resistance to fragmentation on unbound base layer resilient modulus. The Baltic Journal of Road and Bridge Engineering, 17(3), 104–119. https://doi.org/10.7250/bjrbe.2022-17.571
  • Giuntoli, S., Pratelli, C., Betti, G., & Marradi, A. (2018, May 17–19). Field performance evaluation of unbound granular materials using the fast falling weight deflectometer. 5th International conference on road and rail infrastructure - CETRA 2018, Zadar, Croatia, (April). https://doi.org/10.5592/CO/CETRA.2018
  • Haider, S. W., & Chatti, K. (2009). Effect of design and site factors on fatigue cracking of new flexible pavements in the LTPP SPS-1 experiment. International Journal of Pavement Engineering, 10(2), 133–147. https://doi.org/10.1080/10298430802169390
  • Lee, J., Lacey, D., & Look, B. (2017). Best practice in compaction QA for pavement and subgrade materials.
  • Li, C., Ashlock, J. C., White, D. J., & Vennapusa, P. K. R. (2019). Mechanistic-based comparisons of stabilised base and granular surface layers of low-volume roads. International Journal of Pavement Engineering, 20(1), 112–124. https://doi.org/10.1080/10298436.2017.1321417
  • Look, B. G. (2022). An earthworks quality assurance methodology which avoids unreliable correlations (pp. 179–192). https://doi.org/10.1007/978-3-030-77238-3_14
  • Marecos, V., Solla, M., Fontul, S., & Antunes, V. (2017). Assessing the pavement subgrade by combining different non-destructive methods. Construction and Building Materials, 135, 76–85. https://doi.org/10.1016/j.conbuildmat.2017.01.003
  • Mauduit, C., Hammoum, F., Piau, J., Mauduit, V., Ludwig, S., & Hamon, D. (2010). Quantifying expansion effects induced by freeze-thaw cycles in partially water saturated bituminous mix. Road Materials and Pavement Design, 11(Suppl. 1), 443–457. https://doi.org/10.1080/14680629.2010.9690341
  • Miller, D. L., & Dot, K. (2008). Estimating stiffness of subgrade and unbound materials for pavement design. NCHRP Synthesis 382. Traffic Safety.
  • Proctor, R. (1933). Fundamental principles of soil compaction. Engineering News-Record, 111(9), 55–58.
  • Quinta-Ferreira, M., Fung, E., Andrade, P. S., & Branco, F. C. (2012). In-place evaluation of a limestone base course modulus,: using a van-integrated falling weight deflectometer (FWD) and the geogauge (SSG). Road Materials and Pavement Design, 13(4), 817–831. https://doi.org/10.1080/14680629.2012.735794
  • Salour, F., & Erlingsson, S. (2013). Investigation of a pavement structural behaviour during spring thaw using falling weight deflectometer. Road Materials and Pavement Design, 14(1), 141–158. https://doi.org/10.1080/14680629.2012.754600
  • Salour, F., & Erlingsson, S. (2015). Resilient modulus modelling of unsaturated subgrade soils: Laboratory investigation of silty sand subgrade. Road Materials and Pavement Design, 16(3), 553–568. https://doi.org/10.1080/14680629.2015.1021107
  • Sebaaly, B., Davis, T. G., & Mamlouk, M. S. (1985). Dynamics of falling weight deflectometer. Journal of Transportation Engineering, 111(6), 618–632. https://doi.org/10.1061/(ASCE)0733-947X(1985)111:6(618)
  • Sivagnanasuntharam, S., Sounthararajah, A., Ghorbani, J., Bodin, D., & Kodikara, J. (2021). A state-of-the-art review of compaction control test methods and intelligent compaction technology for asphalt pavements. Road Materials and Pavement Design, 24(1), 1–30. https://doi.org/10.1080/14680629.2021.2015423
  • Spagnoli, G., & Shimobe, S. (2020). An overview on the compaction characteristics of soils by laboratory tests. Engineering Geology, 278(January), 105830. https://doi.org/10.1016/j.enggeo.2020.105830
  • Stehlik, D., Dasek, O., Hyzl, P., Coufalik, P., Krcmova, I., & Varaus, M. (2015). Pavement construction using road waste building material – From a model to reality. Road Materials and Pavement Design, 16(Suppl. 1), 314–329. https://doi.org/10.1080/14680629.2015.1029680
  • Subert, I., Imre, E., Garai, J., & Tompai, Z. (2017, September 17–21). Test and method is proposed for measuring the dynamic compaction-rate and dynamic modulus in earthworks. 19th international conference on Soil Mechanics and Geotechnical Engineering (ICSMGE 2017), Seoul, Korea (pp. 657–660).
  • Sun, J., Oh, E., & Ong, D. E. (2021). Influence of degree of saturation (DOS) on dynamic behavior of unbound granular materials. Geosciences, 11(2), 89. https://doi.org/10.3390/geosciences11020089
  • Tatsuoka, F., & Gomes Correia, A. (2018). Importance of controlling the degree of saturation in soil compaction linked to soil structure design. Transportation Geotechnics, 17(April), 3–23. https://doi.org/10.1016/j.trgeo.2018.06.004
  • Tatsuoka, F., Hashimoto, T., & Tateyama, K. (2021). Soil stiffness as a function of dry density and the degree of saturation for compaction control. Soils and Foundations, 61(4), 989–1002. https://doi.org/10.1016/j.sandf.2021.06.007
  • Ullidtz, P. (1998). Modelling flexible pavement response and performance. Polyteknisk Forlag.
  • Vaitkus, A., Laurinavičius, A., Oginskas, R., Motiejūnas, A., Paliukaitė, M., & Barvidienė, O. (2012). The road of experimental pavement structures: Experience of five years operation. The Baltic Journal of Road and Bridge Engineering, 7(3), 220–227. https://doi.org/10.3846/bjrbe.2012.30
  • Zapata, C. E., Andrei, D., Witczak, M. W., & Houston, W. N. (2007). Incorporation of environmental effects in pavement design. Road Materials and Pavement Design, 8(4), 667–693. https://doi.org/10.1080/14680629.2007.9690094
  • Zhang, J., Sabouri, M., Guddati, M. N., & Kim, Y. R. (2013). Development of a failure criterion for asphalt mixtures under fatigue loading. Road Materials and Pavement Design, 14(Suppl. 2), 1–15. https://doi.org/10.1080/14680629.2013.812843
  • Žiliūtė, L., Motiejūnas, A., Kleizienė, R., Gribulis, G., & Kravcovas, I. (2016). Temperature and moisture variation in pavement structures of the test road. Transportation Research Procedia, 14, 778–786. https://doi.org/10.1016/j.trpro.2016.05.067

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.