139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Curing conditions effect on the stabilization of recycled asphalt pavement with alkali-activated metakaolin and rice husk ash-derived activator

, , , &
Pages 1739-1755 | Received 13 Dec 2022, Accepted 10 Oct 2023, Published online: 02 Nov 2023

References

  • ABNT. (2009a). NBR NM 52: Agregados miúdo - Determinação da massa específica e massa específica aparente. Associação Brasileira de Normas Técnicas.
  • ABNT. (2009b). NBR NM 53: Agregado graúdo - Determinação de massa específica, massa específica aparente e absorção de água. Associação Brasileira de Normas Técnicas.
  • Adhikari, S., Khattak, M. J., & Adhikari, B. (2020). Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers. International Journal of Pavement Engineering, 21(4), 483–496. https://doi.org/10.1080/10298436.2018.1492131
  • Al-Hdabi, A. (2016). Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler. Construction and Building Materials, 126, 544–551. https://doi.org/10.1016/j.conbuildmat.2016.09.070
  • Allahverdi, A., Najafi Kani, E., Hossain, K. M. A., & Lachemi, M. (2015). Methods to control efflorescence in alkali-activated cement-based materials. In Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422884.3.463
  • Allahverdi, A., Shaverdi, B., & Kani, E. N. (2010). Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag. International Journal of Civil Engineering, 8(4), 304–314.
  • Alnahhal, M. F., Hamdan, A., Hajimohammadi, A., & Kim, T. (2021). Effect of rice husk ash-derived activator on the structural build-up of alkali activated materials. Cement and Concrete Research, 150(September), 106590. https://doi.org/10.1016/j.cemconres.2021.106590
  • ASTM. (2014). Test methods for specific gravity of soil solids by water pycnometer. American Society for Testing and Materials, 1–8. https://doi.org/10.1520/D0854-14
  • ASTM. (2016). Test method for unconfined compressive strength of cohesive soil. American Society for Testing and Materials, 1–7. https://doi.org/10.1520/D2166
  • ASTM. (2017a). D2487: Standard practice for classification of soils for engineering purposes (unified soil classification system). American Society for Testing and Materials, 1–5.
  • ASTM. (2017b). D7928: Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM International.
  • ASTM. (2018). D2172/D2172M: Standard test methods for quantitative extraction of bitumen from bituminous paving mixtures. American Society for Testing and Materials. https://doi.org/10.1520/D2172-11.2
  • ASTM. (2021). D698: Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). American Society for Testing and Materials.
  • Avirneni, D., Peddinti, P. R. T., & Saride, S. (2016). Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Construction and Building Materials, 121, 198–209. https://doi.org/10.1016/j.conbuildmat.2016.05.162
  • Bernal, S. A., Rodríguez, E. D., De Gutiérrez, R. M., & Provis, J. L. (2015). Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales de Construcción, 65), https://doi.org/10.3989/mc.2015.03114
  • Bernal, S. A., Rodríguez, E. D., Mejia De Gutiérrez, R., Provis, J. L., & Delvasto, S. (2012). Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste and Biomass Valorization, 3(1), 99–108. https://doi.org/10.1007/s12649-011-9093-3
  • Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72–74. https://doi.org/10.1016/j.matlet.2013.10.001
  • Bruschi, G. J., dos Santos, C. P., Ferrazzo, S. T., de Araújo, M. T., & Consoli, N. C. (2021a). Parameters controlling loss of mass and stiffness degradation of ‘green’ stabilised tailings. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 1–9. https://doi.org/10.1680/jgeen.21.00119
  • Bruschi, G. J., dos Santos, C. P., Tonini de Araújo, M., Ferrazzo, S. T., Marques, S. F. V., & Consoli, N. C. (2021b). Green stabilization of bauxite tailings: Mechanical study on alkali-activated materials. Journal of Materials in Civil Engineering, 33(11), 06021007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949
  • Bruschi, G. J., Secco, M. P., Sousa, L., Briga-Sá, A., & Cristelo, N. (2022). Development of facade panels with optimised thermal performance from alkali-activated stone-cutting waste. Environmental Earth Sciences, 81(12), 1–15. https://doi.org/10.1007/s12665-022-10452-3
  • Cihlářová, D., Fencl, I., Cápayová, S., & Pospíšil, P. (2018). Use of adhesion promoters in asphalt mixtures. Slovak Journal of Civil Engineering, 26(1), 19–24. https://doi.org/10.2478/sjce-2018-0003
  • Consoli, N. C., Leon, H. B., da Silva Carretta, M., Daronco, J. V. L., & Lourenço, D. E. (2019). The effects of curing time and temperature on stiffness, strength and durability of sand-environment friendly binder blends. Soils and Foundations, 59(5), 1428–1439. https://doi.org/10.1016/j.sandf.2019.06.007
  • Dai, S., Wang, H., An, S., & Yuan, L. (2022). Mechanical properties and microstructural characterization of metakaolin geopolymers based on orthogonal tests. Materials, 15), https://doi.org/10.3390/ma15082957
  • Davidovits, J. (1989). Geopolymers and geopolymeric materials. Journal of Thermal Analysis, 35(2), 429–441. https://doi.org/10.1007/BF01904446
  • Davidovits, J. (2018). False Values on CO2 Emission for Geopolymer Cement / Concrete published in Scientific Papers How to cite this paper: False Values on CO2 Emission for Geopolymer Cement / Concrete published in Scientific Papers. January 2015.
  • Debbarma, S., Ransinchung, G. D., & Singh, S. (2019). Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement. Construction and Building Materials, 199, 508–525. https://doi.org/10.1016/j.conbuildmat.2018.12.047
  • DNIT. (2010). DNIT 143: Pavimentação – Base de solo-cimento - Especificação de serviço. Departamento Nacional de Infraestrutura de Transportes, 1–10.
  • Duży, P., Choinska, M., Hager, I., Amiri, O., & Claverie, J. (2022). Mechanical strength and chloride ions’ penetration of alkali-activated concretes (AAC) with blended precursor. Materials, 15), https://doi.org/10.3390/ma15134475
  • Edeh, J. E., Onche, O. J. J., & Osinubi, K. J. (2012). Rice husk ash stabilization of reclaimed asphalt pavement using cement as additive. January 2015, 3863–3872. https://doi.org/10.1061/9780784412121.396
  • Fedrigo, W., Núñez, W. P., & Visser, A. T. (2020). A review of full-depth reclamation of pavements with Portland cement: Brazil and abroad. Construction and Building Materials, 262, 120540. https://doi.org/10.1016/j.conbuildmat.2020.120540
  • Ferreira, W., Castelo Branco, V., & Vasconcelos, K. (2022). The Impact of the RAP cluster dissociation on gradation and shape properties of aggregates from recycled asphalt mixtures. Journal of Testing and Evaluation, 50(2), 20210155. https://doi.org/10.1520/JTE20210155
  • Ferreira, W. L. G., Castelo Branco, V. T. F., Vasconcelos, K., Bhasin, A., & Sreeram, A. (2021). The impact of aging heterogeneities within RAP binder on recycled asphalt mixture design. Construction and Building Materials, 300), https://doi.org/10.1016/j.conbuildmat.2021.124260
  • Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, April 2016, pp. 19–47. https://doi.org/10.1533/9781782422884.1.19
  • Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., & MacPhee, D. E. (2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research, 41(9), 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006
  • Horpibulsuk, S., Hoy, M., Witchayaphong, P., Rachan, R., & Arulrajah, A. (2017). Recycled asphalt pavement – fly ash geopolymer as a sustainable stabilized pavement material. IOP Conference Series: Materials Science and Engineering, 273, 0012005. https://doi.org/10.1088/1757-899x/273/1/012005
  • Hoy, M., Horpibulsuk, S., Arulrajah, A., & Mohajerani, A. (2018). Strength and microstructural study of recycled asphalt pavement: Slag geopolymer as a pavement base material. Journal of Materials in Civil Engineering, 30(8), 04018177. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002393
  • Jallu, M., Arulrajah, A., Saride, S., & Evans, R. (2020). Flexural fatigue behavior of fly ash geopolymer stabilized-geogrid reinforced RAP bases. Construction and Building Materials, 254, 119263. https://doi.org/10.1016/j.conbuildmat.2020.119263
  • Kang, X., Ge, L., Kang, G. C., & Mathews, C. (2015a). Laboratory investigation of the strength, stiffness, and thermal conductivity of fly ash and lime kiln dust stabilised clay subgrade materials. Road Materials and Pavement Design, 16(4), 928–945. https://doi.org/10.1080/14680629.2015.1028970
  • Kang, X., Kang, G.-C., Chang, K.-T., & Ge, L. (2015b). Chemically stabilized soft clays for road-base construction. Journal of Materials in Civil Engineering, 27(7), 04014199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001156
  • Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. https://doi.org/10.1007/s10853-006-0401-4
  • Lo Presti, D., Vasconcelos, K., Orešković, M., Pires, G. M., & Bressi, S. (2020). On the degree of binder activity of reclaimed asphalt and degree of blending with recycling agents. Road Materials and Pavement Design, 21(8), https://doi.org/10.1080/14680629.2019.1607537
  • Ma, F., Sha, A., Yang, P., & Huang, Y. (2016). The greenhouse gas emission from Portland cement concrete pavement construction in China. International Journal of Environmental Research and Public Health, 13, https://doi.org/10.3390/ijerph13070632
  • Mavroulidou, M., Gray, C., Gunn, M. J., & Pantoja-Muñoz, L. (2022). A study of innovative alkali-activated binders for soil stabilisation in the context of engineering sustainability and circular economy. Circular Economy and Sustainability, https://doi.org/10.1007/s43615-021-00112-2
  • Mendes, B. C., Pedroti, L. G., Vieira, C. M. F., Marvila, M., Azevedo, A. R. G., Franco de Carvalho, J. M., & Ribeiro, J. C. L. (2021). Application of eco-friendly alternative activators in alkali-activated materials: A review. Journal of Building Engineering, 35(November), https://doi.org/10.1016/j.jobe.2020.102010
  • Miller, S. A., & Myers, R. J. (2020). Environmental impacts of alternative cement binders. Environmental Science & Technology, 54(2), 677–686. https://doi.org/10.1021/acs.est.9b05550
  • Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied Clay Science, 99, 144–148. https://doi.org/10.1016/j.clay.2014.06.024
  • Najafi Kani, E., Allahverdi, A., & Provis, J. L. (2012). Efflorescence control in geopolymer binders based on natural pozzolan. Cement and Concrete Composites, 34(1), 25–33. https://doi.org/10.1016/j.cemconcomp.2011.07.007
  • Nazari, A., Bagheri, A., & Riahi, S. (2011). Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science and Engineering: A, 528(24), 7395–7401. https://doi.org/10.1016/j.msea.2011.06.027
  • Nemati, K. M., & Uhlmeyer, J. S. (2021). Accelerated construction of urban intersections with Portland Cement Concrete Pavement (PCCP). Case Studies in Construction Materials, 14, e00499. https://doi.org/10.1016/j.cscm.2021.e00499
  • Pasche, E., Bruschi, G. J., Specht, L. P., Aragão, F. T. S., & Consoli, N. C. (2022). Fiber-reinforcement effect on the mechanical behavior of reclaimed asphalt pavement–powdered rock–Portland cement mixtures. Transportation Engineering, 9), https://doi.org/10.1016/j.treng.2022.100121
  • Pereira dos Santos, C., Bruschi, G. J., Mattos, J. R. G., & Consoli, N. C. (2022). Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash. Transportation Geotechnics, 32), https://doi.org/10.1016/j.trgeo.2021.100704
  • Pourkhorshidi, S., Sangiorgi, C., Torreggiani, D., & Tassinari, P. (2020). Using recycled aggregates from construction and demolition waste in unbound layers of pavements. Sustainability, 12(22), 9386–9320. https://doi.org/10.3390/su12229386
  • Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009
  • Qin, L., Gao, X., & Li, Q. (2018). Upcycling carbon dioxide to improve mechanical strength of Portland cement. Journal of Cleaner Production, 196, 726–738. https://doi.org/10.1016/j.jclepro.2018.06.120
  • Queiróz, L. C., Miguel, G. D., Bruschi, G. J., & de Lima, M. D. S. (2022a). Macro-micro characterization of green stabilized alkali-activated sand. Geotechnical and Geological Engineering, 40(7), 3763–3778. https://doi.org/10.1007/s10706-022-02130-9
  • Queiróz, L. C., Souza, L. M. P., Lima, M. D., Danieli, S., Bruschi, G. J., & Bergmann, C. P. (2022b). Alkali-activated system of carbide lime and rice husk for granular soil stabilisation. Proceedings of the Institution of Civil Engineers – Ground Improvement, 175(6), 1–37.
  • Radević, A., Isailović, I., Wistuba, M. P., Zakić, D., Orešković, M., & Mladenović, G. (2020). The impact of recycled concrete aggregate on the stiffness, fatigue, and low-temperature performance of asphalt mixtures for road construction. Sustainability, 12), https://doi.org/10.3390/SU12103949
  • Sajan, P., Jiang, T., Lau, C. K., Tan, G., & Ng, K. (2021). Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer. Cleaner Materials, 1(June), 100002. https://doi.org/10.1016/j.clema.2021.100002
  • Saride, S., Avirneni, D., & Challapalli, S. (2016). Micro-mechanical interaction of activated fly ash mortar and reclaimed asphalt pavement materials. Construction and Building Materials, 123, 424–435. https://doi.org/10.1016/j.conbuildmat.2016.07.016
  • SEPLAG. (2021). Clima, temperatura e precipitação - Atlas Socioeconômico do Rio Grande do Sul. Secretária de Planejamento, Orçamento e Gestão, 1–5.
  • Simão, L., Fernandes, E., Hotza, D., Ribeiro, M. J., Montedo, O. R. K., & Raupp-Pereira, F. (2021). Controlling efflorescence in geopolymers: A new approach. Case Studies in Construction Materials, 15), https://doi.org/10.1016/j.cscm.2021.e00740
  • Singh, S., Ransinchung, G. D., Debbarma, S., & Kumar, P. (2018). Utilization of reclaimed asphalt pavement aggregates containing waste from Sugarcane Mill for production of concrete mixes. Journal of Cleaner Production, 174, 42–52. https://doi.org/10.1016/j.jclepro.2017.10.179
  • Sukprasert, S., Hoy, M., Horpibulsuk, S., Arulrajah, A., Rashid, A. S. A., & Nazir, R. (2021). Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications. Road Materials and Pavement Design, 22(2), 357–371. https://doi.org/10.1080/14680629.2019.1621190
  • Syed, M., GuhaRay, A., & Goel, D. (2022). Strength characterisation of fiber reinforced expansive subgrade soil stabilized with alkali activated binder. Road Materials and Pavement Design, 23(5), 1037–1060. https://doi.org/10.1080/14680629.2020.1869062
  • Tabyanga, W., Suksiripattanapong, C., Phetchuay, C., Laksanakit, C., & Chusilp, N. (2021). Evaluation of municipal solid waste incineration fly ash based geopolymer for stabilised recycled concrete aggregate as road material. Road Materials and Pavement Design.
  • Tchakouté, H. K., Rüscher, C. H., Kong, S., Kamseu, E., & Leonelli, C. (2016a). Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construction and Building Materials, 114, 276–289. https://doi.org/10.1016/j.conbuildmat.2016.03.184
  • Tchakouté, H. K., Rüscher, C. H., Kong, S., & Ranjbar, N. (2016b). Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. Journal of Building Engineering, 6, 252–261. https://doi.org/10.1016/j.jobe.2016.04.007
  • Temuujin, J., van Riessen, A., & Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167(1-3), 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121
  • Tian, X., Xu, W., Song, S., Rao, F., & Xia, L. (2020). Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers. Chemosphere, 253, 126754. https://doi.org/10.1016/j.chemosphere.2020.126754
  • Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023
  • Villaquirán-Caicedo, M. A., Mejia De Gutiérrez, R., & Gallego, N. (2017). A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Materiales de Construcción, 67(326), 117–113. https://doi.org/10.3989/mc.2017.02316
  • Vislavičius, K., & Sivilevičius, H. (2013). Effect of reclaimed asphalt pavement gradation variation on the homogeneity of recycled hot-mix asphalt. Archives of Civil and Mechanical Engineering, 13(3), 345–353. https://doi.org/10.1016/j.acme.2013.03.003
  • Wirtgen GmbH. (2012). Wirtgen Cold Recycling Technology.
  • Xie, T., & Ozbakkaloglu, T. (2015). Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceramics International, 41(4), 5945–5958. https://doi.org/10.1016/j.ceramint.2015.01.031
  • Xue, X., Liu, Y. L., Dai, J. G., Poon, C. S., Zhang, W. D., & Zhang, P. (2018). Inhibiting efflorescence formation on fly ash–based geopolymer via silane surface modification. Cement and Concrete Composites, 94(March), 43–52. https://doi.org/10.1016/j.cemconcomp.2018.08.013
  • Yang, Q., Yin, H., He, X., Chen, F., Ali, A., Mehta, Y., & Yan, B. (2020). Environmental impacts of reclaimed asphalt pavement on leaching of metals into groundwater. Transportation Research Part D: Transport and Environment, 85(June), 102415. https://doi.org/10.1016/j.trd.2020.102415
  • Zhang, S., Ren, F., Zhao, Y., Qiu, J., & Guo, Z. (2021). The effect of stone waste on the properties of cemented paste backfill using alkali-activated slag as binder. Construction and Building Materials, 283, 122686. https://doi.org/10.1016/j.conbuildmat.2021.122686
  • Zhou, H., Wang, X., Wu, Y., & Zhang, X. (2021). Mechanical properties and micro-mechanisms of marine soft soil stabilized by different calcium content precursors based geopolymers. Construction and Building Materials, 305, 124722. https://doi.org/10.1016/j.conbuildmat.2021.124722
  • Zhou, S., Zhou, S., Zhang, J., Tan, X., & Chen, D. (2020). Relationship between moisture transportation, efflorescence and structure degradation in fly ash/slag geopolymer. Materials, 13(23), 5550–5516. https://doi.org/10.3390/ma13235550

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.