123
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Direct numerical simulation of a reacting turbulent channel flow with thermochemical ablation

&
Article: N44 | Received 18 Jan 2010, Accepted 02 Sep 2010, Published online: 21 Oct 2010

References

  • Chen , Y.K. and Milos , F.S. 2005 . Navier–Stokes solutions with finite rate ablation for planetary mission earth reentries , 42 : 961 – 970 .
  • Zhong , J. , Ozawa , T. and Levin , D.A. 2008 . Modeling of stardust reentry ablation flows in near-continuum flight regime , 46 : 2568 – 2581 .
  • Geisler , R.L. May 1981 . The Prediction of Graphite Rocket Nozzle Recession Rates , Vol. 5 , 173 – 196 . New Orleans, LA : the 1981 JANNAF Propulsion Meeting .
  • Evans , B. , Ferrara , P.J. , Moore , J.D. and Boyd , E. 2006 . Evaluation of nozzle erosion characteristics utilizing a rocket motor simulator , 2006–5245 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit .
  • Thakre , P. and Yang , V. 2008 . Chemical erosion of carbon–carbon/graphite nozzles in solid-propellant rocket motors , 24 : 822 – 833 .
  • Koo , J.H. , Ho , D.W.H. and Ezekoye , O.A. 2006 . A review of numerical and experimental characterization of thermal protection materials –Part I. Numerical modeling , 2006–4936 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit .
  • Vignoles , G.L. , Lachaud , J. , Aspa , Y. and Goyhénèche , J. 2009 . Ablation of carbon-based materials: Multiscale roughness modelling , 69 : 1470 – 1477 .
  • Kendall , R.M. , Rindal , R.A. and Bartlett , E.P. 1967 . A multicomponent boundary layer chemically coupled to an ablating surface , 5 : 1063 – 1071 .
  • Keswani , S.T. and Kuo , K.K. 1983 . An aerothermochemical model of carbon-carbon composite nozzle recession , 83–910
  • Cai , T. and Hou , X. 1990 . Simple method for numerical simulation of temperature response of the solid rocket nozzle . J. Thermophys. , 4 : 42 – 46 .
  • Baiocco , P. and Bellomi , P. 1996 . A coupled thermo-ablative and fluid dynamic analysis for numerical application to solid propellant rockets , 1996–1811
  • Acharya , R. and Kuo , K.K. 2007 . Effect of chamber pressure and propellant composition on erosion rate of graphite rocket nozzle , 23 : 1242 – 1254 .
  • Bianchi , D. , Nasuti , F. and Martelli , E. 2009 . Coupled analysis of flow and surface ablation in carbon–carbon rocket nozzles , 46 : 492 – 500 .
  • Kim , J. , Moin , P. and Moser , R. 1987 . Turbulence statistics in fully developed channel flow at low Reynolds number , 177 : 133 – 166 .
  • Teitel , M. and Antonia , R.A. 1993 . Heat transfer in fully developed turbulent channel flow: Comparison between experiment and direct numerical simulations , 36 : 1701 – 1706 .
  • Monty , J.P. and Chong , M.S. 2009 . Turbulent channel flow: Comparison of streamwise velocity data from experiments and direct numerical simulation , 633 : 461 – 474 .
  • Hoyas , S. and Jiménez , J. 2006 . Scaling the velocity fluctuations in turbulent channel up to Reτ =2003 , 18 : 011702
  • Huang , P.G. , Coleman , G.N. and Bradshaw , P. 1995 . Compressible turbulent channel flows: DNS results and modelling , 305 : 185 – 218 .
  • Nicoud , F. 1998 . Numerical study of a channel flow with variable properties , 289 – 310 . Center for Turbulence Research, NASA Ames/Stanford University .
  • Kawamura , H. , Abe , H. and Matsuo , Y. 1999 . DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects , 20 : 196 – 207 .
  • Morinishi , Y. , Tamano , S. and Nakabayashi , K. 2004 . Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls , 502 : 273 – 308 .
  • Cabrit , O. and Nicoud , F. 2009 . Direct simulations for wall modeling of multicomponent reacting compressible turbulent flows , 21 : 055108
  • Sumitani , Y. and Kasagi , N. 1995 . Direct numerical simulation of turbulent transport with uniform wall injection and suction , 33 : 1220 – 1228 .
  • Hahn , S. , Je , J. and Choi , H. 2002 . Direct numerical simulation of turbulent channel flow with permeable walls , 450 : 259 – 285 .
  • Velghe , A. , Nguyen-Bui , N.T.H. and Chassaing , P. 2007 . Direct numerical simulation of reacting turbulent flow on ablatable surface , Miami, FL : 2007–4400, 39th AIAA Thermophysics Conference .
  • Burakov , V.A. and Sandu , S.F. 1997 . Mathematical modeling of the dynamics of slagging and thermochemical destruction of carbon composite thermal protective materials in high-temperature two-phase flow . Combust. Explos. Shock Waves , 33 : 472 – 481 .
  • Wirzberger , H. and Yaniv , S. 2005 . Prediction of erosion in solid rocket motor by alumina particles , 2005–4496
  • Klager , K. 1977 . The interaction of the efflux of solid propellants with nozzle materials , 2 : 55 – 63 .
  • Williams , F.A. 1985 . “ Combustion Theory ” . In 2nd, Perseus Books Reading, MA
  • Kuo , K.K. 2005 . Principles of Combustion , Hoboken, NJ : 2nd John, Wiley & Sons, Inc. .
  • Poinsot , T. and Veynante , D. 2005 . Theoretical and Numerical Combustion, , 2nd ed. , Philadelphia, PA : Edwards .
  • Amaya , J. , Cabrit , O. , Poitou , D. , Cuenot , B. and El Hafi , M. 2010 . Unsteady coupling of Navier–Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow , 111 : 295 – 301 .
  • Hirschfelder , J. , Curtiss , F. and Bird , R. 1964 . Molecular Theory of Gases and Liquids , John Wiley & Sons .
  • Giovangigli , V. 1999 . Multicomponent Flow Modeling , Boston, MA : Birkhäuser .
  • Cvelbar , D.A. May 1981 . Nozzle recession study , 51 – 68 . New Orleans, LA : 1981 JANNAF Propulsion Meeting .
  • Keswani , S.T. , Andiroglu , E. , Campbell , J.D. and Kuo , K.K. 1983 . Recession behavior of graphitic nozzles in simulated rocket motors , 1983–1317
  • Ern , A. and Giovangigli , V. 1994 . Multicomponent Transport Algorithms , Springer, Heidelberg : Lecture Notes in Physics, New Series Monographs, m 24 .
  • Ern , A. and Giovangigli , V. 1995 . Fast and accurate multicomponent transport property evaluation , 120 : 105 – 116 .
  • Kee , R.J. , Miller , J.A. and Jefferson , T.H. 1980 . Chemkin: A General-Purpose, Problem-independent, Transportable, Fortran Chemical-Kinetics Code Package , SAND80–8003, Sandia National Laboratories .
  • Kee , R.J. , Rupley , F.M. and Miller , J.A. 1989 . Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics , SAND89–8009B, Sandia National Laboratories .
  • Savvatimskiy , A.I. 2005 . Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003), Carbon , 43 : 1115 – 1142 .
  • Gowariker , V.R. 1966 . Mechanical and chemical contributions to the erosion rates of graphite throats in rocket motor nozzles , 3 : 1490 – 1494 .
  • Chelliah , H.K. , Makino , A. , Kato , I. , Araki , N. and Law , C.K. 1996 . Modeling of graphite oxidation in a stagnation-point flow field using detailed homogeneous and semiglobal heterogeneous mechanisms with comparisons to experiments , 104 : 469 – 480 .
  • Libby , P.A. and Blake , T.R. 1979 . Theoretical study of burning carbon particles , 36 : 139 – 169 .
  • Golovina , E.C. 1980 . The gasification of carbon by carbon dioxide at high temperatures and pressures , Carbon 18 : 197 – 201 .
  • Bradley , D. , Dixon-Lewis , G. , El-Din Habik , S. and Mushi , E.M.J. 1984 . “ The Oxidation of Graphite Powder in Flame Reaction Zones ” . In 20th Symp. (Int.) on Combustion , 931 – 940 . Pittsburg : The Combustion Institute .
  • Keswani , S.T. and Kuo , K.K. 1986 . Validation of an aerothermochemical model for graphite nozzle recession and heat-transfer process . Combust. Tech. , 47 : 177 – 192 .
  • Jiménez , J. and Moin , P. 1991 . The minimal flow unit in near-wall turbulence , 225 : 213 – 240 .
  • Moser , R. , Kim , J. and Mansour , N. 1999 . Direct numerical simulation of turbulent channel flow up to Reτ = 590 , 11 : 943 – 945 .
  • Moureau , V. , Lartigue , G. , Sommerer , Y. , Angelberger , C. , Colin , O. and Poinsot , T. 2005 . Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids , 202 : 710 – 736 .
  • Schmitt , P. , Poinsot , T. , Schuermans , B. and Geigle , K.P. 2007 . Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner , 570 : 17 – 46 .
  • Mendez , S. and Nicoud , F. 2008 . Large-eddy simulation of a bi-periodic turbulent flow with effusion , 598 : 27 – 65 .
  • Colin , O. and Rudgyard , M. 2000 . Development of high-order Taylor–Alerkin schemes for unsteady calculations , 162 : 338 – 371 .
  • Simpson , R.L. 1970 . Characteristics of turbulent boundary layers at low Reynolds numbers with and without transpiration , 42 : 769 – 802 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.