440
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A multi-scale simulation method for high Reynolds number wall-bounded turbulent flows

&
Pages 1-38 | Received 07 Aug 2013, Accepted 22 Sep 2013, Published online: 13 Nov 2013

References

  • F. Hamba, An attempt to combine large eddy simulation with the k − ε model in a channel-flow calculation, Theoret. Comput. Fluid Dyn. 14 (2001), pp. 323–336.
  • L. Davidson S. Peng, Hybrid LES-RANS modelling: A one equation sgs model combined with a k − ω model for predicting recirculating flows, Int. J. Numer. Methods Fluids 43 (2003), . pp. 1003–1018.
  • M. Breuer, B. Jaffrźic, K. Arora, Hybrid LESRANS technique based on a one-equation near-wall model, Theor. Comput. Fluid Dyn. 22 (2008), . pp. 157–187.
  • T. Hughes, L. Mazzei, A. Oberai, The multiscale formulation of large-eddy simulation: Decay of homogeneous isotropic turbulence, Phys. Fluids 13 (2001), . pp. 505–512.
  • T. Hughes, A. Oberai, L. Mazzei, Large eddy simulation of turbulent channel flows by variational multiscale method, Phys. Fluids 13 (2001), . pp. 1784–1799.
  • T. Dubois F. Jauberteau, A dynamic multilevel model for the simulation of the small structures in homogenous isotropic turbulence, J. Sci. Comput. 13 (1998), . pp. 323–367.
  • J. Laval, B. Dubrule, S. Nazarenko, Nonlocality and intermittency in three-dimensional turbulence, Phys. Fluids 13 (2001), . pp. 1995–2012.
  • K. Kemenov S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows, J. Comput. Phys. 220 (2006), . pp. 290–311.
  • K. Kemenov S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows. Part 2: Non-homogeneous flows, J. Comput. Phys. 222 (2007), . pp. 673–701.
  • A.G. Gungor S. Menon, A new two-scale model for large eddy simulation of wall-bounded flows, Prog. Aeros. Sci. 46 (2010), . pp. 28–45.
  • C. Fureby, N. Alin, N. Wikstrom, S. Menon, N. Svanstedt, L. Persson, On large eddy simulation of high Reynolds number wall bounded flows, AIAA J. 42 (2004), . pp. 457–469.
  • B. Vreman, B. Geurts, H. Kuerten, Large-eddy simulation of the turbulent mixing layers, J. Fluid Mech. 339 (1997), . pp. 357–390.
  • P. Moin, Advances in large eddy simulation methodology for complex flows, Int. J. Heat Fluid Flow 23 (2003), . pp. 710–720.
  • J. Smagorinsky, General circulation experiments with the primitive equations, Monthly Weather Rev. 91 (1993), . pp. 99–164.
  • W.-W. Kim S. Menon, An unsteady incompressible Navier-Stokes solver for large-eddy simulation of turbulent flows, Int. J. Numer. Fluid Mech. 31 (1999), . pp. 983–1017.
  • M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A 3 (1991), . pp. 1760–1765.
  • U. Piomelli, Large-eddy simulation: Achievements and challenges, Prog. Aerosp. Sci. 35 (1999), . pp. 335–362.
  • S. Ghosal, Mathematical and physical constraints on large eddy simulation of turbulence, AIAA J. 37 (1999), . pp. 425–433.
  • U. Piomelli E. Balaras, Wall layer models for large eddy simulation, Annu. Rev. Fluid Mech. 34 (2002), . pp. 349–374.
  • C. Meneveau J. Katz, Scale-invariance and turbulence models for large-eddy simulation, Annu. Rev. Fluid Mech. 32 (2000), . pp. 1–32.
  • C.G. Speziale, On nonlinear K-l and K-ε models of turbulence, J. Fluid Mech. 178 (1987), . pp. 459–475.
  • T.J. Craft, B.E. Launder, K. Suga, Development and application of a cubic eddy-viscosity model of turbulence, Int. J. Heat Fluid Flow 17 (1996), . pp. 108–115.
  • R. Bourguet, M. Braza, G. Harran, R.E. Akoury, Anisotropic organised eddy simulation for the prediction of non-equilibrium turbulent flows around bodies, J. Fluids Struct. 24 (2008), . pp. 1240–1251.
  • C.G. Spezial1, Analytical method for the development of Reynolds-stress closures in turbulence, Annu. Rev. Fluid Mech. 23 (1991), . pp. 107–157.
  • J. Jimenez, Computing high-Reynolds-number turbulence: Will simulations ever replace experiments?, J. Turbul. 4 (2003), . pp. 1–14.
  • J.S. Baggett, On the Feasibility of Merging LES with RANS in the Near-wall Region of Attached Turbulent Flows, Center For Turbulent Research, Annual Research Briefs (1998),. pp. 267–277.
  • G. De Prisco, U. Piomelli, A. Keating, Improved turbulence generation techniques for hybrid RANS/LES calculations, J. Turbul. 9 (2008), . pp. 1–20.
  • S.B. Pope, Turbulent Flows, Cambridge U. Press, Cambridge, 2000.
  • S. Menon W.-W. Kim, High Reynolds number flow simulations using the localized dynamic subgrid-scale model, AIAA Paper 96–0425 (1996), . pp. 1–11.
  • R. Ranjan C. Pantano, A collocated method for incompressible Navier-Stokes equations inspired by the Box scheme, J. Comput. Phys. 232 (2013), . pp. 346–382.
  • M. Germano, Properties of the hybrid RANS/LES filter, Theoret. Comput. Fluid Dyn. 17 (2004), . pp. 225–231.
  • M. Germano and P. Sagaut, Formal Properties of the Additive RANS/DNS Filter, Direct and Large-Eddy Simulations VI, Springer, Netherlands, 2006.
  • M. Sanchez-Rocha S. Menon, The compressible hybrid RANS/LES formulation using an additive operator, J. Comput. Phys. 228 (2009), . pp. 2037–2062.
  • M. Sanchez-Rocha S. Menon, An order-of-magnitude approximation for the hybrid terms in the compressible hybrid RANS/LES governing equations, J. Turbul. 12 (2011), . pp. 1–22.
  • H. Yu Y. Liu, A second order accurate, component-wise TVD scheme for nonlinear, hyperbolic conservation laws, J. Comput. Phys. 173 (2001), . pp. 1–16.
  • M. Marquillie, J.-P. Laval, R. Dolganov, Direct numerical simulation of a separated channel flow with a smooth profile, J. Turbul. 9 (2008), . pp. 1–23.
  • R. Moser, J. Kim, N. Mansour, Direct numerical simulation of turbulent channel flow up to Reτ = 590, Phys. Fluids 11 (1999), . pp. 943–945.
  • S. Hickel N.A. Adams, On implicit subgrid-scale modeling in wall-bounded flows, Phys. Fluids 19 (2007), . p. 105106 (1–13).
  • J. del Alamo, J. Jimenez, P. Zandonade, R. Moser, Scaling of the energy spectra of turbulent channels, J. Fluid Mech. 500 (2004), . pp. 135–144.
  • A. Bernard, J.M. Foucaut, P. Dupont, M. Stanislas, Decelerating boundary layer: A new scaling and mixing length model, AIAA J. 41 (2003), . pp. 248–255.
  • J.-P. Laval and M. Marquillie, Direct numerical simulations of  converging diverging channel flow, in Progress in Wall Turbulence: Understanding and Modeling, . volume 14 of ERCOFTAC Series, M. Stanislas, J. Jimenez, and I. Marusic, eds. , Springer, Netherlands, 2011, . pp. 203–209.
  • A.G. Gungor and S. Menon, Multi-scale simulation of near-wall turbulent flows, in Direct and Large-Eddy Simulation VII, . volume 13 of ERCOFTAC Series, V. Armenio, B. Geurts, and J. Frhlich, eds. , Springer, Netherlands, 2010, . pp. 157–162.
  • R.L. Simpson, Aspects of turbulent boundary-layer separation, Prog. Aerosp. Sci. 32 (1996), . pp. 457–521.
  • R. Ranjan, C. Pantano, P. Fischer, Direct simulation of turbulent swept flow over a wire in a channel, J. Fluid Mech. 651 (2010), . pp. 165–209.
  • M. Dianat I.P. Castro, Turbulence in a separated boundary layer, J. Fluid Mech. 226 (1991), . pp. 91–123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.