378
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence

&
Pages 24-53 | Received 19 Jul 2013, Accepted 22 Sep 2013, Published online: 29 Oct 2013

References

  • G.I. Taylor, Statistical theory of turbulence, Proc. R. Soc. Lond. A 151 (1935), pp. 421–444.
  • T. Von Karman L. Howarth, On the statistical theory of isotropic turbulence, Proc. R. Soc. A 164 (1938), . pp. 192–215.
  • G.K. Batchelor, Energy decay and self-preserving correlation functions in isotropic turbulence, Quart. Appl. Math. 6 (1948), . p. 97.
  • G. Comte-Bellot S. Corrsin, The use of a contraction to improve the isotropy of grid-generated turbulence, J. Fluid Mech. 25 (1966), . pp. 657–682.
  • W.K. George, The decay of homogeneous isotropic turbulence, Phys. Fluids A 4(7) (1992), . pp. 1492–1509.
  • M.S. Uberoi, Energy transfer in isotropic turbulence, Phys. Fluids 6(8) (1963), . pp. 1048–1056.
  • M.S. Mohamed J.C. LaRue, The decay power law in grid-generated turbulence, J. Fluid Mech. 219 (1990), . pp. 195–214.
  • P.A. Krogstad P.A. Davidson, Is grid turbulence Saffman turbulence? J. Fluid Mech. 642 (2010), . pp. 373–394.
  • P.C. Valente J.C. Vassilicos, The decay of turbulence generated by a class of multiscale grids, J. Fluid Mech. 687 (2011), . pp. 300–340.
  • S.A. Orszag, Analytical theories of turbulence, J. Fluid Mech. 41 (1970), . pp. 363–386.
  • B. Mazzi J.C. Vassilicos, Fractal-generated turbulence, J. Fluid Mech. 502 (2004), . pp. 65–87.
  • T. Ishida, T. Gotoh, Y. Kaneda, Study of high-Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech. 41 (2009), . pp. 165–180.
  • J. Tchoufag, P. Sagaut, C. Cambon, Spectral approach to finite Reynolds number effects on Kolmogorovś 4/5 law in isotropic turbulence, Phys. Fluids 24(1) (2012), . p. 015107.
  • G.K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, UK, 1953.
  • J.O. Hinze, Turbulence, McGraw-Hill Series in Mechanical Engineering, New York City, New York, USA, 1975.
  • A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, volume 2, MIT Press, Cambridge, Massachusetts, USA, 1975.
  • P.A. Davidson, Turbulence. An Introduction for Scientists and Engineers, Oxford University Press, Oxford, UK, 2004.
  • P. Sagaut and C. Cambon, Homogenous Turbulence Dynamics, Cambridge University Press, Cambridge, UK, 2008.
  • P.A. Krogstad P.A. Davidson, Near-field investigation of turbulence produced by multi-scale grids, Phys. Fluids 24(3) (2012), . p. 035103.
  • W.K. George, Asymptotic effect on initial upstream conditions on turbulence, J. Fluids Eng. 134 (2012), . p. 061203.
  • T. Von Karman C.C. Lin, On the concept of similarity in the theory of isotropic turbulence, Rev. Mod. Phys. 21(3) (1949), . pp. 516–519.
  • C.C. Lin, Remarks on the Spectrum of Turbulence, Proceedings of the First Symposium of Applied Mathematics, American Mathematical Society, Providence, Rhode Island, USA, 1947.
  • R.W. Stewart A.A. Townsend, Similarity and self-preservation in isotropic turbulence, Phil. Trans. Soc. Lond. 243A (1951), . pp. 359–386.
  • W.K. George, Some new ideas for similarity of turbulent shear flows, in Proceedings of the Symposium on Turbulence, Heat and Mass Transfer, . K. Hanjalic and J. F. C. Pereira, eds., Begell House, Redding, Connecticut, USA, 1994, . pp. 24–49.
  • T.T. Clark C. Zemach, Symmetries and the approach to statistical equilibrium in isotropic turbulence, Phys. Fluids 10(11) (1998), . pp. 2846–2858.
  • M. Oberlack, On the decay exponent of isotropic turbulence, Proc. Appl. Math. Mech. 1(1) (2002), . pp. 294–297.
  • J.L. Dryden, A review of the statistical theory of turbulence, Q. App. Maths 1 (1943), . pp. 7–42.
  • W.K. George H. Wang, The exponential decay of homogeneous turbulence, Phys. Fluids 21(2) (2009), . p. 025108.
  • P.C. Valente J.C. Vassilicos, Dependence of decaying homogeneous isotropic turbulence on inflow conditions, Phys. Lett. A 376 (2012), . pp. 510–514.
  • L. Skrbrek S.R. Stalp, On the decay of homogeneous isotropic turbulence, Phys. Fluids 12(8) (2000), . pp. 1997–2019.
  • M. Lesieur, Turbulence in Fluids, 4th ed., Springer, Berlin, Germany, 2008.
  • M. Meldi P. Sagaut, On non-self-similar regimes in homogeneous isotropic turbulence decay, J. Fluid Mech. 711 (2012), . pp. 364–393.
  • M. Meldi, P. Sagaut, D. Lucor, A stochastic view of isotropic turbulence decay, J. Fluid Mech. 668 (2011), . pp. 351–362.
  • M. Meldi P. Sagaut, Pressure statistics in self-similar freely decaying isotropic turbulence, J. Fluid Mech. 717 (2013), . p. R2.
  • C.G. Speziale P.S. Bernard, The energy decay in self-preserving isotropic turbulence revisited, J. Fluid Mech. 241 (1992), . pp. 645–667.
  • J.R. Ristorcelli, The self-preserving decay of isotropic turbulence: Analytic solutions for energy and dissipation, Phys. Fluids 15 (2003), . pp. 3248–3250.
  • J.R. Ristorcelli D. Livescu, Decay of isotropic turbulence: Fixed points and solutions for nonconstant G ∼ Reλ palinstrophy, Phys. Fluids 16 (2004), . pp. 3487–3490.
  • J.R. Ristorcelli, Passive scalar mixing: Analytic study of time scale ratio, variance and mix rate, Phys. Fluids 18 (2006), . p. 075101.
  • H. Guo, C. Li, Q. Qu, P. Liu, Attractive fixed-point solution study of shell model for homogeneous isotropic turbulence, Appl. Math. Mech. 34 (2013), . pp. 259–268.
  • P.A. Davidson, The minimum energy decay rate in quasi-isotropic grid turbulence, Phys. Fluids 23(8) (2011), . p. 085108.
  • R. Rubinstein T.T. Clark, Self-similar turbulence evolution and the dissipation rate transport equation, Phys. Fluids 17 (2005), . p. 095104.
  • S.L. Woodruff R. Rubinstein, Multiple-scale perturbation analysis of slowly evolving turbulence, J. Fluid Mech. 565 (2006), . pp. 95–103.
  • H. Makita, Realization of a large-scale turbulence field in a small wind tunnel, Fluid Dyn. Res. 8 (1991), . pp. 53–64.
  • H.S. Kang, S. Chester, C. Meneveau, Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation, J. Fluid Mech. 480 (2003), . pp. 129–160.
  • P. Lavoie, L. Djenidi, R.A. Antonia, Effects of initial conditions in decaying turbulence generated by passive grids, J. Fluid Mech. 585 (2007), . pp. 395–420.
  • D. Hurst J.C. Vassilicos, Scalings and decay of fractal-generated turbulence, Phys. Fluids 19 (2007), . p. 035103.
  • N. Mazellier J.C. Vassilicos, Turbulence without Richardson-like cascade, Phys. Fluids 22(7) (2010), . p. 075101.
  • T. Ishida, P.A. Davidson, Y. Kaneda, On the decay of isotropic turbulence, J. Fluid Mech. 564 (2006), . pp. 455–475.
  • P.K. Yeung, K.R. Donzis, and D. Sreenivasan, Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers, J. Fluid Mech. 700 (2012), . pp. 5–15.
  • S. Pirozzoli, On the velocity and dissipation signature of vortex tubes in isotropic turbulence, Physica D 241 (2012), . pp. 202–207.
  • P. Schaefer, M. Gampert, N. Peters, The length distribution of streamline segments in homogeneous isotropic decaying turbulence, Phys. Fluids 24(4) (2012), . p. 045104.
  • K. Spyksma, M. Magcalas, N. Campbell, Quantifying effects of hyperviscosity on isotropic turbulence, Phys. Fluids 24(12) (2012), . p. 125102.
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  • J. Meyers C. Meneveau, A functional form for the energy spectrum parametrizing bottleneck and intermittency effects, Phys. Fluids 20(6) (2008), . p. 065109.
  • G.L. Eyink D.J. Thomson, Free decay of turbulence and breakdown of self-similarity, Phys. Fluids 12 (2000), . pp. 477–479.
  • A.N. Kolmogorov, Dissipation of energy in the locally isotropic turbulence, Comptes rendus (Doklady) de l’Academie des sciences de l’URSS, XXXII(1) (1941), . pp. 16–18.
  • L. Djenidi, S. Tardu, and R.A. Antonia, Breakdown of Kolmogorov’s scaling in grid turbulence, European Turbulence Conference (ETC14), Lyon, France, 2013.
  • G.K. Batchelor A.A. Townsend, Decay of turbulence in the final period, Proc. R. Soc. 194 (1948), . p. 527.
  • P.J. Saffman, The large-scale structure of homogeneous turbulence, J. Fluid Mech. 27 (1967), . pp. 581–593.
  • M. Lesieur D. Schertzer, Self similar decay of high Reynolds-number turbulence, J. Mecanique 17(4) (1978), . pp. 609–646.
  • M. Lesieur, C. Montmory, J.P. Chollet, The decay of kinetic energy and temperature variance in three dimensional isotropic turbulence, Phys. Fluids 30 (1987), . pp. 1278–1286.
  • H. Tennekes and J.L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Massachusetts, USA, 1972.
  • W.K. George, H. Wang, C. Wollblad, T.G. Johansson, “Homogeneous Turbulence” and its relation to realizable flows, 14th Australian Fluid Mechanics Conference, Adelaide, AU, 2001.
  • R. Rubinstein T.T. Clark, Self-similar turbulence evolution and the dissipation rate transport equation, Phys. Fluids 17(09) (2005), . p. 095104.
  • R.A. Antonia, T. Zhou, L. Danaila, F. Anselmet, Scaling of the mean energy dissipation rate equation in grid turbulence, J. Turbul. 3 (2002), . p. 34.
  • S. Tavoularis, J.C. Bennett, S. Corrsin, Velocity-derivative skewness in small Reynolds-number, nearly isotropic turbulence, J. Fluid Mech. 88 (1978), . pp. 63–69.
  • N.N. Mansour A.A. Wray, Decay of isotropic turbulence at low Reynolds number, Phys. Fluids 6 (1994), . pp. 808–814.
  • M.J. Huang A. Leonard, Power-law decay of homogeneous turbulence at low Reynolds numbers, Phys. Fluids 6(11) (1994), . pp. 3765–3775.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.