216
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A priori assessment of the subgrid scale viscous/scalar dissipation closures in compressible turbulence

, , &
Pages 43-61 | Received 15 May 2013, Accepted 04 Oct 2013, Published online: 18 Nov 2013

References

  • P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd ed., Springer, New York, 2000.
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • M. Lesieur, O. Métais, and P. Comte, Large-Eddy Simulations of Turbulence, Cambridge University Press, Cambridge, 2005.
  • T.B. Gatski and J.P. Bonnet, Compressibility, Turbulence and High Speed Flow, Elsevier Science, Philadelphia PA, 2009.
  • E. Garnier, N. Adams, and P. Sagaut, Large Eddy Simulation for Compressible Flows, Springer, New York, 2009.
  • C.K. Madnia and P. Givi, Direct numerical simulation and large eddy simulation of reacting homogeneous turbulence, in Large Eddy Simulations of Complex Engineering and Geophysical Flows, B. Galperin and S.A. Orszag, eds., Cambridge University Press, Cambridge, 1993, pp. 315–346.
  • B. Vreman, B. Geurts, and H. Kuerten, Subgrid-modelling in LES of compressible flow, Appl. Sci. Res. 54 (1995), pp. 191–203.
  • M.P. Martin, U. Piomelli, and G.V. Candler, Subgrid-scale models for compressible large-eddy simulations, Theor. Comput. Fluid Dyn. 13 (2000), pp. 361–376.
  • S.G. Chumakov, Scaling properties of subgrid-scale energy dissipation, Phys. Fluids 19 (2007), p. 058104.
  • C. Meneveau and J. O'Neil, Scaling laws of the dissipation rate of turbulent subgrid-scale kinetic energy, Phys. Rev. E 49 (1994), p. 2866.
  • V. Borue and S. Orszag, Kolmogorov’s refined similarity hypothesis for hyperviscous turbulence, Phys. Rev. E 53 (1996), p. R21.
  • S. Menon, P.K. Yeung, and W.W. Kim, Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence, Comput. Fluids 25 (1996), pp. 165–180.
  • S. Ghosal, T.S. Lund, P. Moin, and K. Akselvoll, A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech. 286 (1995), pp. 229–255.
  • S.S. Girimaji and Y. Zhou, Analysis and modeling of subgrid scalar mixing using numerical data, Phys. Fluids 8 (1996), pp. 1224–1236.
  • C.D. Pierce and P. Moin, A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar, Phys. Fluids 10 (1998), pp. 3041–3044.
  • C. Jiménez, F. Ducros, B. Cuenot, and B. Bédat, Subgrid scale variance and dissipation of a scalar field in large eddy simulations, Phys. Fluids 13 (2001), pp. 1748–1754.
  • G. Balarac, H. Pitsch, and V. Raman, Modeling of the subfilter scalar dissipation rate using the concept of optimal estimators, Phys. Fluids 20 (2008), p. 091701.
  • C.B. da Silva, S. Rego, and J.C.F. Pereira, Analysis of the viscous/molecular subgrid-scale dissipation terms in LES based on transport equations: A priori tests, J. Turbul. 9 (2008), pp. 1–36.
  • J.W. Deardorff, The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence, J. Fluids Eng. 95 (1973), pp. 429–438.
  • A. Yoshizawa, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Phys. Fluids 29 (1986), pp. 2152–2164.
  • P. Moin, K. Squires, W.H. Cabot, and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A: Fluid Dyn. 3 (1991), p. 2746.
  • J.J. Riley and R.W. Metcalfe, Direct numerical simulation of a perturbed, turbulent mixing layer, AIAA Paper No 80-0274, American Institute of Aeronautics and Astronautics, Reston, VA, 1980.
  • R.D. Moser and M.M. Rogers, The three-dimensional evolution of a plane mixing layer: Pairing and transition to turbulence, J. Fluid Mech. 247 (1993), pp. 275–320.
  • R.S. Miller, C.K. Madnia, and P. Givi, Structure of a turbulent reacting mixing layer, Combust. Sci. Technol. 99 (1994), pp. 1–36.
  • B. Vreman, Direct and large eddy simulation of the compressible turbulent mixing layer, PhD thesis, University of Twente, 1995.
  • C. Pantano and S. Sarkar, A study of compressibility effects in the high-speed turbulent shear layer using direct simulation, J. Fluid Mech. 451 (2002), pp. 329–371.
  • I. Mahle, Direct and large-eddy simulation of inert and reacting compressible turbulent shear layers, PhD thesis, Technische Universität München, 2007.
  • M.R.H. Sheikhi, P. Givi, and S.B. Pope, Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows, Phys. Fluids 21 (2009), p. 075102.
  • K. Thompson, Time-dependent boundary conditions for hyperbolic systems, II, J. Comput. Phys. 89 (1990), pp. 439–461.
  • S.A. Ragab and J.L. Wu, Linear instabilities in two-dimensional compressible mixing layers, Phys. Fluids A: Fluid Dyn. 1 (1989), p. 957.
  • M. Klein, A. Sadiki, and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys. 186 (2003), pp. 652–665.
  • L. di Mare, M. Klein, W.P. Jones, and J. Janicka, Synthetic turbulence inflow conditions for large-eddy simulation, Phys. Fluids 18 (2006), p. 025107.
  • A. Hadjadj, H.C. Yee, and B. Sjögreen, LES of temporally evolving mixing layers by an eighth-order filter scheme, Int. J. Numer. Meth. Fluids 70 (2012), pp. 1405–1427.
  • P.L. O’Neill, D. Nicolaides, D. Honnery, and J. Soria, Autocorrelation Functions and the Determination of Integral Length with Reference to Experimental and Numerical Data, Proceedings of the 15th Australasian Fluid Mechanics Conference, The University of Sydney, 2004.
  • D. Gottlieb and E. Turkel, Dissipative two−four methods for time dependent problems, Math. Comput. 30 (1976), pp. 703–723.
  • M.M. Rogers and R.D. Moser, Direct simulation of a self similar turbulent mixing layer, Phys. Fluids 6 (1994), p. 903.
  • D. Papamoschou and A. Roshko, The compressible turbulent shear layer: An experimental study, J. Fluid Mech. 197 (1988), pp. 453–477.
  • M. Samimy and G.S. Elliott, Effects of compressibility on the characteristics of free shear layers, AIAA J. 28 (1990), pp. 439–445.
  • N. Chinzei, G. Masuya, T. Komuro, A. Murakami, and K. Kudou, Spreading of two-stream supersonic turbulent mixing layers, Phys. Fluids 29 (1986), p. 1345.
  • J.R. Debisschop, O. Chambres, and J.P. Bonnet, Velocity field characteristics in supersonic mixing layers, Exp. Therm. Fluid Sci. 9 (1994), pp. 147–155.
  • M.F. Barone, W.L. Oberkampf, and F.G. Blottner, Validation case study: Prediction of compressible turbulent mixing layer growth rate, AIAA J. 44 (2006), pp. 1488–1497.
  • Y. Dubief, On coherent-vortex identification in turbulence, J. Turbul. 1 (2000), pp. 37–41.
  • M. Tanahashi, S. Iwase, and T. Miyauchi, Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer, J. Turbul. 2 (2001), pp. 1–18.
  • A. Hadjadj and A. Kudryavtsev, Computation and flow visualization in high-speed aerodynamics, J. Turbul. 6 (2005), p. N16.
  • A. Moreau, O. Teytaud, and J.P. Bertoglio, Optimal estimation for large-eddy simulation of turbulence and application to the analysis of subgrid models, Phys. Fluids 18 (2006), p. 105101.
  • C.B. da Silva and J.C.F. Pereira, On the local equilibrium of the subgrid scales: The velocity and scalar fields, Phys. Fluids 17 (2005), p. 108103.
  • M. Germano, U. Piomelli, P. Moin, and W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A: Fluid Dyn. 3 (1991), p. 1760.
  • D.K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A: Fluid Dyn. 4 (1992), p. 633.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.