222
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

On the role of anisotropic turbomachinery flow structures in inter-scale turbulence energy flux as deduced from SPIV measurements

&
Pages 44-70 | Received 17 Mar 2013, Accepted 27 Oct 2013, Published online: 10 Dec 2013

References

  • A.J. Sanders, J. Papalia, and S. Fleeter, Multi-blade row interactions in a transonic axial compressor; Part I: Stator particle image velocimetry (PIV) investigation, J. Turbomach. 124 (2002), pp. 10–18.
  • Y.C. Chow, O. Uzol, and J. Katz, Flow nonuniformities and turbulent ‘hot spots’ due to wake-blade and wake-wake interactions in a multi-stage turbomachine, J. Turbomach. 124 (2002), pp. 553–563.
  • R. Dong, S. Chu, and J. Katz, Quantitative visualization of the flow within the volute of a centrifugal pump. Part B: Results and analysis, J. Fluids Eng. 114 (1992), pp. 396–403.
  • M. Sinha and J. Katz, Quantitative visualization of the flow in a centrifugal pump with diffuser vanes – I: On flow structures and turbulence, J. Fluids Eng. 122 (2000), pp. 97–107.
  • O. Uzol, Y.C. Chow, J. Katz, and C. Meneveau, Experimental investigation of unsteady flow field within a two-stage axial turbomachine using particle image velocimetry, J. Turbomach. 124 (2002), pp. 542–552.
  • O. Uzol, Y.C. Chow, J. Katz, and C. Meneveau, Average passage flow field and deterministic stresses in the tip and hub regions of a multistage turbomachine, J. Turbomach. 125 (2003), pp. 714–725.
  • N. Montazerin, A. Damangir, and A. KazemiFard, A study of slip factor and velocity components at the rotor exit of forward-curved squirrel cage fans, using laser Doppler anemometry, Proc. IMechE, Part A: J. Power Energy. 215 (2001), pp. 453–463.
  • S.M. Rezaei Niya, N. Montazerin, A. Damangir, and A.H. Dehkordi, Performance and laser Doppler anemometry experimental investigation of squirrel cage fans with half-cone rotors, Proc. IMechE, Part A: J. Power Energy. 220 (2006), pp. 753–763.
  • M. Nikkhoo, N. Montazerin, A. Damangir, and R.S. Samian, An experimental study of leaning blades on the half-cone rotor of a squirrel cage fan, Proc. IMechE, Part A: J. Power Energy. 223 (2009), pp. 973–980.
  • H.W. Roth, Optimierung von trommelläufer-ventilatoren, Strömungsmechanik und Strömungsmaschinen. 29 (1981), pp. 1–45.
  • G. Akbari, N. Montazerin, and M. Akbarizadeh, Stereoscopic particle image velocimetry of the flow field in the rotor exit region of a forward-blade centrifugal turbomachine, Proc. IMechE, Part A: J. Power Energy. 226 (2011), pp. 163–181.
  • G. Akbari and N. Montazerin, A-priori study of subgrid-scale models for the flow field in the rotor exit region of a centrifugal turbomachine, Int. J. Heat Mass Transfer. 66 (2013), pp. 423–439.
  • B. Tao, J. Katz, and C. Meneveau, Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements, J. Fluid Mech. 457 (2002), pp. 35–78.
  • C.W. Higgins, M.B. Parlange, and C. Meneveau, Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer, Boundary Layer Meteor. 109 (2003), pp. 59–83.
  • Y.C. Chow, O. Uzol, J. Katz, and C. Meneveau, Experimental study of the structure of a rotor wake in a complex turbomachinery flow, 4th ASME-JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, USA, July 6–11, 2003.
  • W.T. Ashurst, A.R. Kerstein, R.M. Kerr, and C.H. Gibson, Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids. 30 (8) (1987), pp. 2343–2353.
  • K.K. Nomura and G.K. Post, The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence, J. Fluid Mech. 377 (1998), pp. 65–97.
  • A. Vincent and M. Meneguzzi, The spatial structure and statistical properties of homogeneous turbulence, J. Fluid Mech. 225 (1991), pp. 1–20.
  • A. Tsinober, E. Kit, and T. Dracos, Experimental investigation of the field of velocity gradients in turbulent flows, J. Fluid Mech. 242 (1992), pp. 169–192.
  • H.S. Kang and C. Meneveau, Effect of large-scale coherent structures on subgrid-scale stress and strain-rate eigenvector alignments in turbulent shear flow, Phys. Fluids. 17 (2005), pp. 1–20.
  • J. Chen, J. Katz, and C. Meneveau, Implication of mismatch between stress and strain-rate in turbulence subjected to rapid straining and destraining on dynamic LES models, J. Fluids Eng. 127 (2005), pp. 840–850.
  • S. Liu, C. Meneveau, and J. Katz, Experimental study of similarity subgrid-scale models of turbulence in the far-field of a jet, Appl. Sci. Res. 54 (1995), pp. 177–190.
  • M. Sinha, J. Katz, and C. Meneveau, Quantitative visualization of the flow in a centrifugal pump with diffuser vanes-II: Addressing passage-averaged and large-eddy simulation modeling issues in turbomachinery flows, J. Fluids Eng. 122 (2000), pp. 108–116.
  • J.F. Morrison, W. Jiang, B.J. McKeon, and A.J. Smits, Reynolds-number dependence of streamwise velocity spectra in turbulent pipe flow, Phys. Rev. Lett. 88 (2002) 214501.
  • C. Galletti, E. Brunazzi, S. Pintus, A. Paglianti, and M. Yianneskis, A study of Reynolds stresses, triple products and turbulence states in a radially stirred tank with 3-D laser anemometry, Chem. Eng. Res. Design. 82 (2004), pp. 1214–1228.
  • N. Jovičić, M. Breuer, and J. Jovanović, Anisotropy-invariant mapping of turbulence in a flow past an unswept airfoil at high angle of attack, J. Fluids Eng. 128 (2006), pp. 559–567.
  • J.L. Lumley and G. Newman, The return to isotropy of homogeneous turbulence, J. Fluid Mech. 82 (1977), pp. 161–178.
  • S. Banerjee, R. Krahl, F. Durst, and Ch. Zenger, Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches, J. Turbulence. 8 (32) (2007), pp. 1–27.
  • R. Escudié and A. Liné, Analysis of turbulence anisotropy in a mixing tank, Chem. Eng. Sci. 61 (2006), pp. 2771–2779.
  • J.J. Derksen, M.S. Doelman, and H.E.A. Van Den Akker, Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank, Exp. Fluids. 27 (1999), pp. 522–532.
  • J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev. 91 (3) (1963), pp. 99–164.
  • M. Germano, U. Piomelli, P. Moin, and W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids. 3 (1991), pp. 1760–1765.
  • J. Bardina, J.H. Ferziger, and W.C. Reynolds, Improved subgrid scale models for large-eddy simulation, Am. Inst. Aeronaut. Astronaut., >Fluid and Plasma Dynamics Conference, Snowmass, July 14–16, 1980.
  • C. Härtel and L. Kleiser, Analysis and modelling of subgrid-scale motions in near-wall turbulence, J. Fluid Mech. 356 (1998), pp. 327–352.
  • U. Piomelli and Y. Yu, Subgrid-scale energy transfer and near-wall turbulence structure, Phys. Fluids. 8 (1) (1996), pp. 215–224.
  • D.C. Dunn and J.F. Morrison, Anisotropy and energy flux in wall turbulence, J. Fluid Mech. 491 (2003), pp. 353–378.
  • R. Akhavan, A. Ansari, S. Kang, and N. Mangiavacchi, Subgrid-scale interactions in a numerically simulated planar turbulent jet and implications for modelling, J. Fluid Mech. 408 (2000), pp. 83–120.
  • A. Cimarelli and E. De Angelis, Anisotropic dynamics and sub-grid energy transfer in wall-turbulence, Phys. Fluids. 24 (2012), pp. 1–18.
  • J.G. Brasseur, and C.-H. Wei, Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interactions, Phys. Fluids. 6 (1994), pp. 842–870.
  • H.S. Kang, S. Chester, and C. Meneveau, Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation, J. Fluid Mech. 480 (2003), pp. 129–160.
  • H.S. Kang and C. Meneveau, Experimental study of an active grid-generated shearless mixing layer and comparisons with large-eddy simulation, Phys. Fluids 20 (12) (2008), pp. 125102.
  • J. Kleissl, V. Kumar, C. Meneveau, and M.B. Parlange, Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions, Water Resources Research 42 (2006), W06D10, DOI:10.1029/2005WR004685.
  • H. Wu, R.L. Miorini, and J. Katz, Analysis of turbulence in the tip region of a waterjet pump rotor, ASME Third Joint US-European Fluids Engineering Meeting, Montreal, Canada, August 1–5, 2010.
  • J. Chen, C. Meneveau, and J. Katz, Scale interactions of turbulence subjected to a straining-relaxation-destraining cycle, J. Fluid Mech., 562 (2006), pp. 123–150.
  • W.A.M. Nimmo Smith, J. Katz, and T.R. Osborn, The effect of waves on subgrid-scale stresses, dissipation and model coefficients in the coastal ocean bottom boundary later, J. Fluid Mech. 583 (2007), pp. 133–160.
  • P. Doron, L. Bertuccioli, J. Katz, and T.R. Osborn, Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data, J. Phys. Oceanography, 31 (2001), pp. 2108–2134.
  • The International Organization for Standardization. International Standard ISO 5801, Industial Fans, Fan Performance Testing Using Standardized Airways, 2007.
  • P. Saarenrinne, M. Piirto, and H. Eloranta, Experiences of turbulence measurement with PIV, Meas. Sci. Technol. 6 (2001), pp. 1904–1910.
  • S. Baldi and M. Yianneskis, On the direct measurement of turbulence energy dissipation in stirred vessels with PIV, Ind. Eng. Chem. Res. 42 (2003), pp. 7006–7016.
  • FlowManager Software and Introduction to PIV Instrumentation. Dantec Dynamics A/S, Tonsbakken 18, DK-2740 Skovlunde, Denmark, 2002.
  • J. Westerweel, Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8 (1997), pp. 1379–1392.
  • S. Liu, C. Meneveau, and J. Katz, On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet, J. Fluid Mech. 275 (1994), pp. 83–119.
  • A. Agrawal and A.K. Prasad, Measurements within vortex cores in a turbulent jet, J. Fluids Eng. 125 (2003), pp. 561–568.
  • J. Mi, P. Kalt, G.J. Nathan, and C.Y. Wong, PIV measurements of a turbulent jet issuing from round sharp-edged plate, Exp. Fluids 42 (2007), pp. 625–637.
  • R.D. Keane and R.J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res. 49 (1992), pp. 191–215.
  • D.P. Hart, PIV error correction, Exp. Fluids 29 (2000), pp. 13–22.
  • E.F.J. Overmars, N.G.W. Warncke, C. Poelma, and J. Westerweel, Bias errors in PIV: the pixel locking effect revisited, 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 5-8 July, 2010.
  • M. Stanislas, K. Okamoto, C.J. Kähler, and J. Westerweel, Main results of the second international PIV challenge, Exp. Fluids 39 (2005), pp. 170–191.
  • K.T. Christensen, The influence of peak-locking errors on turbulence statistics computed from PIV ensembles, Exp. Fluids 36 (2004), pp. 484–497.
  • M.R. Najjari, N. Montazerin, and G. Akbari, Statistical PIV data validity for enhancement of velocity driven parameters in turbomachinery jet-wake flow, 20th Annual International Conference on Mechanical Engineering, Shiraz, Iran, 16–18 May, 2012.
  • T. Lund and M. Rogers, An improved measure of strain state probability in turbulent flows, Phys. Fluids 6 (1994), pp. 1838–1847.
  • S.B. Pope, Turbulent Flows, 1st ed., Cambridge University Press, Cambridge, 2000.
  • A.J. Simonsen, and P.-A. Krogstad, Turbulent stress invariant analysis: clarification of existing terminology, Phys. Fluids 17 (2005), 088103.
  • R.M. Kerr, J.A. Domaradzki, and G. Barbier, Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence, Phys. Fluids 8 (1996), pp. 197–208.
  • N. Marati, C.M. Casciola, and R. Piva, Energy cascade and spatial fluxes in wall turbulence, J. Fluid Mech. 521 (2004), pp. 191–215.
  • C. Härtel and L. Kleiser, Galilean invariance and filtering dependence of near-wall grid-scale/subgrid-scale interactions in large-eddy simulation, Phys. Fluids 9 (1997), pp. 473–475.
  • J. Sheng, H. Meng, and R.O. Fox, A large eddy PIV method for turbulence dissipation rate estimation, Chem. Eng. Sci. 55 (2000), pp. 4423–4434.
  • R.V. Hout, W. Zhu, L. Luznik, J. Katz, J. Kleissl, and M.B. Parlange, PIV measurements in the atmospheric boundary layer within and above a mature corn canopy. Part I: Statistics and energy flux, Am. Meteor. Soc. 64 (2007), pp. 2805–2824.
  • K. Bai, C. Meneveau, and J. Katz, Experimental study of spectral energy fluxes in turbulence generated by a fractal, tree-like object, Phys. Fluids 25 (2013), pp. 110810.
  • S. Liu, J. Katz, and C. Meneveau, Evolution and modeling of subgrid scales during rapid straining of turbulence, J. Fluid Mech. 387 (1999), pp. 281–320.
  • J. Hong, J. Katz, C. Meneveau, and M.P. Schultz, Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow, J. Fluid Mech. 712 (2012), pp. 92–1.28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.