484
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Effect of wall temperature on hypersonic turbulent boundary layer

, &
Pages 37-57 | Received 26 Jul 2013, Accepted 14 Nov 2013, Published online: 18 Dec 2013

References

  • L. Duan, I. Beekman, and M.P. Martín, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature, J. Fluid Mech. 655 (2010), pp. 419–445.
  • M. Morkovin, Effects of compressibility on turbulent flows, In: A. Favre (Ed.): Mèchanique de la Turbulence, Centre National de al Techerche Scientific, Paris, 1962, pp. 367–380.
  • H.H. Fernholz and P.J. Finley, A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers, Tech. Rep. 253, AGARD, France, 1980.
  • S.E. Guarini, R.D. Moser, K. Shariff, and A. Wray, Direct numerical simulation of a supersonic boundary layer at Mach 2.5, J. Fluid Mech. 414 (2000), pp. 1–33.
  • S. Pirozzoli, F. Grasso, and T.B. Gatski, Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25, Phys. Fluids 16 (2004), pp. 530–545.
  • L. Duan, I. Beekman, and M.P. Martín, Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number, J. Fluid Mech. 672 (2011), pp. 245–267.
  • M. Lagha, J. Kim, J.D. Eldredge, and X. Zhong, A numerical study of compressible turbulent boundary layers, Phys. Fluids 23 (2011a), p. 015106.
  • L. Duan and M.P. Martín, Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy, J. Fluid Mech. 684 (2011), pp. 25–59.
  • S.K. Robinson, Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech. 23 (1991), pp. 601–639.
  • T. Theodorsen, Mechanism of turbulence, Proceedings of the Second Midwestern Conference on Fluid Mechanics, Columbus, Ohio, 1952, pp. 17–19.
  • M. Head and P. Bandyopadhyay, New aspects of turbulent boundary-layer structure, J. Fluid Mech. 107 (1981), pp. 297–338.
  • L. Ong and J.M. Wallace, Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer, J. Fluid Mech. 367 (1998), pp. 291–328.
  • B. Ganapathisubramani, E.K. Longmire, and I. Marusic, Experimental investigation of vortex properties in a turbulent boundary layer, Phys. Fluids 18 (2006), p. 055105.
  • E.F. Spina, A.J. Smits, and S.K. Robinson, The physics of supersonic turbulent boundary layers, Annu. Rev. Fluid Mech. 26 (1994), pp. 287–319.
  • S. Pirozzoli, M. Bernardini, and F. Grasso, Characterization of coherent vortical structures in a supersonic turbulent boundary layer, J. Fluid Mech. 613 (2008), pp. 205–231.
  • L. Wang and X.Y. Lu, Statistical analysis of coherent vortical structures in a supersonic turbulent boundary layer, Chinese Phys. Lett. 28 (2011), p. 034703.
  • G.S. Jiang and C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996), pp. 202–228.
  • C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), pp. 439–471.
  • L. Wang and X.Y. Lu, Flow topology in compressible turbulent boundary layer, J. Fluid Mech. 703 (2012), pp. 255–278.
  • Y.B. Chu and X.Y. Lu, Topological evolution in compressible turbulent boundary layers, J. Fluid Mech. 733 (2013), pp. 414–438.
  • N.D. Sandham, Q. Li, and H.C. Yee, Entropy splitting for high-order numerical simulation of compressible turbulence, J. Comput. Phys. 178 (2002), pp. 307–322.
  • S. Pirozzoli, Numerical methods for high-speed flows, Annu. Rev. Fluid Mech. 43 (2011), pp. 163–194.
  • M.P. Martin, Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments, J. Fluid Mech. 570 (2007), pp. 347–364.
  • S. Xu and M.P. Martin, Assessment of inflow boundary conditions for compressible turbulent boundary layers, Phys. Fluids 16 (2004), pp. 2623–2639.
  • N.A. Adams, Direct numerical simulation of turbulent compression ramp flow, Theor. Comput. Fluid Dyn. 12 (1998), pp. 109–129.
  • P. Bradshaw, Compressible turbulent shear layers, Annu. Rev. Fluid Mech. 9 (1977), pp. 33–54.
  • A. Walz, Boundary Layers of Flow and Temperature, MIT Press, Cambridge, Massachusetts, 1969.
  • P.G. Huang, G.N. Coleman, and P. Bradshaw, Compressible turbulent channel flows: DNS results and modelling, J. Fluid Mech. 305 (1995), pp. 185–218.
  • T. Maeder, N.A. Adams, and L. Kleiser, Direct simulation of turbulent supersonic boundary layers by an extended temporal approach, J. Fluid Mech. 429 (2001), pp. 187–216.
  • G.N. Coleman, J. Kim, and R.D. Moser, A numerical study of turbulent supersonic isothermal-wall channel flow, J. Fluid Mech. 305 (1995), pp. 159–183.
  • M.S. Chong, A.E. Perry, and B.J. Cantwell, A general classification of three-dimensional flow fields, Phys. Fluids A 2 (1990), pp. 765–777.
  • J. Zhou, R.J. Adrian, S. Balachandar, and T.M. Kendall, Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech. 387 (1999), pp. 353–396.
  • M. Stanislas, L. Perret, and J.M. Foucaut, Vortical structures in the turbulent boundary layer: A possible route to a universal representation, J. Fluid Mech. 602 (2008), pp. 327–382.
  • G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Inc. Orlando, FL, USA, 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.