358
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

A subgrid model for clustering of high-inertia particles in large-eddy simulations of turbulence

&
Pages 366-385 | Received 06 Jul 2013, Accepted 14 Mar 2014, Published online: 29 Apr 2014

References

  • M.R. Maxey, The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields, J. Fluid Mech. 174 (1987), pp. 441–465.
  • K.D. Squires and J.K. Eaton, Preferential concentration of particles by turbulence, Phys. Fluids A 3 (1991), pp. 1169–1178.
  • L.P. Wang and M.R. Maxey, Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech. 256 (1993), pp. 27–68.
  • J.K. Eaton and J.R. Fessler, Preferential concentration of particles by turbulence, Int. J. Multiphase Flow 20 (1994), pp. 169–209.
  • S. Sundaram and L.R. Collins, Collision statistics in an isotropic, particle-laden turbulent suspension. Part I. Direct numerical simulations, J. Fluid Mech. 335 (1997), pp. 75–109.
  • J.R. Fessler, J.D. Kulick, and J.K. Eaton, Preferential concentration of heavy particles in a turbulent channel flow, Phys. Fluids 6 (1994), pp. 3742–3749.
  • J.P.L.C. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L.R. Collins, Experimental and numerical investigation of inertial particle clustering in isotropic turbulence, J. Fluid Mech. 600 (2008), pp. 245–256.
  • E.W. Saw, R.A. Shaw, S. Ayyalasomayajula, P.Y. Chuang, and A. Gylfason, Inertial clustering of particles in high-Reynolds-number turbulence, Phys. Rev. Lett. 100 (2008), p. 214501.
  • M. Gibert, H. Xu, and E. Bodenschatz, Where do small, weakly inertial particles go in a turbulent flow? J. Fluid Mech. 698 (2012), pp. 160–167.
  • C.P. Bateson and A. Aliseda, Wind tunnel measurements of the preferential concentration of inertial droplets in homogeneous isotropic turbulence, Exp. Fluids 52 (2012), pp. 1373–1387.
  • E.W. Saw, R.A. Shaw, J.P.L.C. Salazar, and L.R. Collins, Spatial clustering of polydisperse inertial particles in turbulence: II. Comparing simulation with experiment, New J. Phys. 14 (2012), p. 105031.
  • R.A. Shaw, W.C. Reade, L.R. Collins, and J. Verlinde, Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra, J. Atmos. Sci. 55 (1998), pp. 1965–1976.
  • W.C. Reade and L.R. Collins, A numerical study of the particle size distribution of an aerosol undergoing turbulent coagulation, J. Fluid Mech. 415 (2000), pp. 45–64.
  • G. Falkovich, A. Fouxon, and M.G. Stepanov, Acceleration of rain initiation by cloud turbulence, Nature 419 (2002), pp. 151–154.
  • R.A. Shaw, Particle-turbulence interactions in atmospheric clouds, Annu. Rev. Fluid Mech. 35 (2003), pp. 183–227.
  • B.J. Devenish, P. Bartello, J.L. Brenguier, L.R. Collins, W.W. Grabowski, R.H.A. IJzermans, S.P. Malinowski, M.W. Reeks, J.C. Vassilicos, L.P. Wang, and Z. Warhaft, Droplet growth in warm turbulent clouds, Quart. J. Royal Meteor. Soc. 138 (2012), pp. 1401–1429.
  • W.W. Grabowski and L.P. Wang, Growth of cloud droplets in a turbulent environment, Ann. Rev. Fluid Mech. 45 (2013), pp. 293–324.
  • O. Ayala, B. Rosa, L.P. Wang, and W.W. Grabowski, Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation, New J. Phys. 10 (2008), p. 075015.
  • L. Pan and P. Padoan, Relative velocity of inertial particles in turbulent flows, J. Fluid Mech. 661 (2010), pp. 73–107.
  • L. Pan, P. Padoan, J. Scalo, A.G. Kritsuk, and M.L. Norman, Turbulent clustering of protoplanetary dust and planetesimal formation, Astrophys. J. 740 (2011), p. 6.
  • M.A.I. Khan, X.Y. Luo, F.C.G.A. Nicolleau, P.G. Tucker, and G. Lo Iacono, Effects of LES sub-grid flow structure on particle deposition in a plane channel with a ribbed wall, Int. J. Num. Meth. Biomed. Eng. 26 (2010), pp. 999–1015.
  • D.A. McQuarrie, Statistical Mechanics, Harper & Row, New York, 1976.
  • L.P. Wang, A.S. Wexler, and Y. Zhou, Statistical mechanical description and modeling of turbulent collision of inertial particles, J. Fluid Mech. 415 (2000), pp. 117–153.
  • O. Ayala, B. Rosa, and L.P. Wang, Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization, New J. Phys. 10 (2008), p. 075016.
  • J. de Jong, J.P.L.C. Salazar, L. Cao, S.H. Woodward, L.R. Collins, and H. Meng, Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging, Int. J. Multiphase Flow 36 (2010), pp. 324–332.
  • J. Bec, L. Biferale, M. Cencini, A.S. Lanotte, and F. Toschi, Intermittency in the velocity distribution of heavy particles in turbulence, J. Fluid Mech. 646 (2010), pp. 527–536.
  • J. Chun, D.L. Koch, S. Rani, A. Ahluwalia, and L.R. Collins, Clustering of aerosol particles in isotropic turbulence, J. Fluid Mech. 536 (2005), pp. 219–251.
  • L.I. Zaichik and V.M. Alipchenkov, Statistical models for predicting pair dispersion and particle clustering in isotropic turbulence and their applications, New J. Phys. 11 (2009), p. 103018.
  • J.P.L.C. Salazar and L.R. Collins, Inertial particle relative velocity statistics in homogeneous isotropic turbulence, J. Fluid Mech. 696 (2012), pp. 45–66.
  • Q. Wang and K.D. Squires, Large eddy simulation of particle-laden turbulent channel flow, Phys. Fluids 8 (1996), pp. 1207–1223.
  • Q. Wang and K. Squires, Large eddy simulation of particle deposition in a vertical turbulent channel flow, Int. J. Multiphase Flow 22 (1996), pp. 667–683.
  • V. Armenio, U. Piomelli, and V. Fiorotto, Effect of the subgrid scales on particle motion, Phys. Fluids 11 (1999), pp. 3030–3042.
  • M. Boivin, O. Simonin, and K.D. Squires, On the prediction of gas-solid flows with two-way coupling using large eddy simulation, Phys. Fluids 12 (2000), pp. 2080–2090.
  • P. Fede and O. Simonin, Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles, Phys. Fluids 18 (2006), p. 045103.
  • C. Marchioli, M.V. Salvetti, and A. Soldati, Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows, Phys. Fluids 20 (2008), p. 040603.
  • J. Pozorski and S.V. Apte, Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, Int. J. Multiphase Flow 35 (2009), pp. 118–128.
  • J. Capecelatro, P. Pepiot, and O. Desjardins, Numerical characterization and modeling of particle clustering in wall-bounded vertical risers, Chem. Eng. J. 245 (2014), pp. 295–310.
  • B. Shotorban and F. Mashayek, Modeling subgrid-scale effects on particles by approximate deconvolution, Phys. Fluids 17 (2005), p. 081701.
  • J.G.M. Kuerten, Subgrid modeling in particle-laden channel flow, Phys. Fluids 18 (2006), p. 025108.
  • G. Jin, G.W. He, and L.P. Wang, Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence, Phys. Fluids 22 (2010), p. 055106.
  • B. Ray and L.R. Collins, Preferential concentration and relative velocity statistics of inertial particles in Navier-Stokes turbulence with and without filtering, J. Fluid Mech. 680 (2011), pp. 488–510.
  • C. Gobert and M. Manhart, Subgrid modelling for particle-LES by Spectrally Optimised Interpolation (SOI), J. Comp. Phys. 230 (2011), pp. 7796–7820.
  • B. Shotorban and F. Mashayek, A stochastic model for particle motion in large-eddy simulation, J. Turb. 7 (2006), p. N11.
  • B. Shotorban and F. Mashayek, On Stochastic Modeling of Heavy Particle Dispersion in Large-Eddy Simulation of Two-Phase Turbulent Flow, IUTAM Symposium on Computational Multiphase Flow Vol. 81, Part V, Springer, Dordrecht, 2006.
  • P. Fede, O. Simonin, P. Villedieu, and K.D. Squires, Stochastic Modeling of Turbulent Subgrid Fluid Velocity Along Inertia Particle Trajectories, Proceedings of the 2006 CTR Summer Program, Center for Turbulence Research, Stanford, CA, 2006.
  • M.J. Cernick, Particle subgrid scale modeling in large-eddy simulation of particle-laden turbulence, Master's thesis, McMaster University, 2013.
  • B. Ray and L.R. Collins, Investigation of sub-Kolmogorov inertial particle pair dynamics in turbulence using novel satellite particle simulations, J. Fluid Mech. 720 (2013), pp. 192–211.
  • S.B. Pope Turbulent Flows, Cambridge University Press, New York, 2000.
  • G.S. Patterson and S.A. Orszag, Spectral calculation of isotropic turbulence: Efficient removal of aliasing interactions, Phys. Fluids 14 (1971), pp. 2538–2541.
  • R.W. Johnson (ed.), The Handbook of Fluid Dynamics, CRC Press, New York, 1998.
  • K.A. Brucker, J.C. Isaza, T. Vaithianathan, and L.R. Collins, Efficient algorithm for simulating homogeneous turbulent shear flow without remeshing, J. Comp. Phys. 225 (2007), pp. 20–32.
  • A. Witkowska, J.G. Brasseur, and D. Juvé, Numerical study of noise from isotropic turbulence, J. Comput. Acoust. 5 (1997), pp. 317–336.
  • S. Sundaram and L.R. Collins, A numerical study of the modulation of isotropic turbulence by suspended particles, J. Fluid Mech. 379 (1999), pp. 105–143.
  • M.R. Maxey and J.J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26 (1983), pp. 883–889.
  • P.J. Ireland, T. Vaithianathan, and L.R. Collins, Massively parallel simulations of inertial particles in high-Reynolds-number turbulence, Proceedings of the Seventh International Conference on Computational Fluid Dynamics, Hawaii, 2012.
  • P.J. Ireland, T. Vaithianathan, P.S. Sukheswalla, B. Ray, and L.R. Collins, Highly parallel particle-laden flow solver for turbulence research, Comput. Fluids 76 (2013), pp. 170–177.
  • R.H. Kraichnan, Diffusion by a random velocity field, Phys. Fluids 13 (1970), pp. 22–31.
  • J.C.H. Fung, J.C.R. Hunt, N.A. Malik, and R.J. Perkins, Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes, J. Fluid Mech. 236 (1992), pp. 281–318.
  • P. Flohr and J.C. Vassilicos, A scalar subgrid model with flow structure for large-eddy simulations of scalar variances, J. Fluid Mech. 407 (2000), pp. 315–349.
  • D.R. Osborne, J.C. Vassilicos, and J.D. Haigh, One-particle two-time diffusion in three-dimensional homogeneous isotropic turbulence, Phys. Fluids 17 (2005), p. 035104.
  • N.A. Malik and J.C. Vassilicos, A Lagrangian model for turbulent dispersion with turbulent-like flow structure: Comparison with direct numerical simulation for two-particle statistics, Phys. Fluids 11 (1999), pp. 1572–1580.
  • G. Lacorata, A. Mazzino, and U. Rizza, 3D chaotic model for subgrid turbulent dispersion in large eddy simulations, J. Turbul. 65 (2008), pp. 2389–2401.
  • H.D. Yao and G.W. He, A kinematic subgrid scale model for large-eddy simulation of turbulence-generated sound, J. Turbul. 10 (2009), pp. 1–14.
  • A.D. Bragg and L.R. Collins, New insights from comparing statistical theories for inertial particles in turbulence. Part I. Spatial distribution of particles, New J. Phys., in press (2014).
  • M. Ulitsky and L.R. Collins, Relative importance of coherent structures vs background turbulence in the propagation of a premixed flame, Combust. Flame 111 (1997), pp. 257–275.
  • N. Clark and J. Vassilicos, Kinematic simulation of fully developed turbulent channel flow, Flow Turbul. Combust. 86 (2011), pp. 263–293.
  • E.W. Weisstein, Sphere Point Picking, MathWorld – A Wolfram Web Resource, 2013; software available at http://mathworld.wolfram.com/SpherePointPicking.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.